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Preface

The Computer Science Research Institute (CSRI) brings university faculty and
students to Sandia for focused collaborative research on Department of Energy (DOE) com-
puter and computational science problems. The institute provides an opportunity for uni-
versity researchers to learn about problems in computer and computational science at DOE
laboratories. Participants conduct leading-edge research, interact with scientists and engi-
neers at the laboratories, and help transfer results of their research to programs at the labs.
Some specific CSRI research interest areas are: scalable solvers, optimization, adaptivity
and mesh refinement, graph-based, discrete, and combinatorial algorithms, uncertainty esti-
mation, mesh generation, dynamic load-balancing, virus and other malicious-code defense,
visualization, scalable cluster computers, data-intensive computing, environments for scal-
able computing, parallel input/output, advanced architectures, and theoretical computer
science. The CSRI Summer Program is organized by CSRI and typically includes the orga-
nization of a weekly seminar series and the publication of a summer proccedings.

1. CSRI Summer Program 2020. In 2020, the CSRI summer program was exe-
cuted completely virtually; all student interns worked from home, due to the COVID-19
pandemic. It involved students from 1400—the Center for Computing Research (CCR),
8700—the Center for Homeland Security & Defense Systems, 1300—the Radiation & Elec-
trical Science Center, and 1800—the Material, Physical, and Chemical Sciences Center have
actively participated, along with their mentors, in different program activities. We relied
heavily on online portals such as SharePoint, MatterMost, Slack, and standard mailing lists
to maintain ongoing commuication with interns. The program included its classical com-
ponents: Summer Seminar Series and Summer Proceedings, along with new ones: Virtual
Poster Blitz, Reading Groups, and Diversity & Inclusion Workshop. Below are more details
about each activity.

2. Seminar Series. An important educational component of the summer program
is the CSRI Summer Seminar Series. The Seminar Series’ focus areas for 2020 talks were:
Artificial Intelligence (AI) and Neuromorphic Computing (NC)—which are well aligned with
Sandia’s strategic thrusts in computer and information sciences. Expert staff members from
1400—CCR, 5900—Proliferation Assessment, 6300—Systems Mission Engineering, 6600—
Asset Security & WMD Response, and 8700—Homeland Sec. & Def. Systems have shared
their knowledge and expertise on a variety of AI/MC algorithms/methods/applications with
our interns, using different presentation and video technologies as shown in Figure 2.1. We
would like to thank the staff who spoke at the 2020 Seminar Series, listed in Table 2.1. We
would also like to thank Suma Cardwell and Craig Vineyard for coordinating the 1421-led
lightning talks on neuromorphic computing methods and applications.

Fig. 2.1: Skype screenshots from different seminar series’ talks.
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Table 2.1: List of talks and speakers at the 2020 Seminar Series.

Date Name Org Title

6/9 Team 1400 Introduction to the CSRI Summer Program 2020

6/16 Brad Aimone 1421 Overview of Neuromorphic Computing Research
Frances Chance 1421 Dragonfly Inspired Interception
Suma Cardwell 1421 Neuromorphic Hardware and Architectures

6/23 Craig Vineyard 1421 Introduction to AI/ML efforts and neural approaches
William Severa 1421 Computing Challenges in Connected and Autonomous Vehi-

cles
Felix Wang 1421 Brain-Inspired Navigation

6/30 Erin Acquesta 5954 Epidemiology Modeling of the COVID-19 Pandemic

7/14 Thomas
Catanach

8759 A Bayesian Perspective on Machine Learning and UQ

7/16 David Stracuzzi 1462 The Role of Uncertainty Quantification in Machine Learning

7/21 Danny Dunlavy 1461 Tensor Decompositions for Analyzing Multi-Way Data

7/30 Philip
Kegelmeyer

8700 The Counter-Intuitive Properties of Ensembles for Machine
Learning: Democracy Defeats Meritocracy

8/4 Mallory Stites 6672 Using Eye-Tracking to Understand Cognitive Processing

8/6 Kelsey DiPietro 1463 Optimal Transport and its applications in adaptive transport
and machine learning

8/13 Marta D’Elia 8754 Data-Driven Physics-Informed Approaches for Model Learn-
ing in the Context of Nonlocal Equations

8/18 Tian Ma 6300 Introduction to Remote Sensing Object Detection

8/20 Tim Draelos 6362 Deep Learning – Engineered, Data Driven AI: Applications
and Opportunities

8/25 Warren Davis 1461 Deep Learning Applications

3. Proceedings. All students and their mentors were encouraged to contribute a tech-
nical article to the CSRI Proceedings. In many cases, the CSRI Proceedings are the first
opportunity that students have to write a research article. Not only do these proceedings
serve to document the research conducted during the summer but, as part of the research
training goals of Sandia, it is the intent that these articles serve as precursors to or first
drafts of articles that could be submitted to peer-reviewed journals. As such, each arti-
cle has been reviewed by a Sandia staff member knowledgeable in that technical area with
feedback provided to the authors.

Contributions to the 2020 CSRI Proceedings came from different centers and have been
organized into the following broad categories— Computational & Applied Mathematics, Soft-
ware & High Performance Computing and Applications; illuestrated in Figure 3.1.

We would like to thank all participants who have contributed to the outstanding tech-
nical accomplishments of the proceedings in 2020. We would also like to thank those who
reviewed articles for this proceedings; their feedback is an important part of the training
process and has significantly improved the proceedings quality: Brad Aimone • Park Hays
• John Jakeman • Heidi Thornquist • Siva Rajamanickam • Brian Kelley • Eric Phipps •
Andrew Bradley • Kathryn Maupin • Kyungjoo Kim • Cannada Lewis • Matthew Wong •
Edward Walsh • Felix Wang • Suma Cardwell • Patrick Widener • Erik Boman • Chuck
Hemberee •Marta D’Elia • Andrew Baczewski • Paul Kuberry • Nat Trask • Chad Sockwell
• Oksana Guba • Mohan Sarovar • Chris LaFleur • Brian Ehrhart • Joey Hart • Justin
Winokur • Brian Adams • Scott Hemmert • Kara Peterson • Richard Barrett • Jon Berry
• Rich Lehoucq • Christian Glusa • Jonathan Hu.
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Fig. 3.1: Articles at CSRI Proceedings 2020, by research area and by intern organization.

4. Virtual Poster Blitz. In preparation for the proceedings, a virtual poster blitz
event was held on 7/23/2020, where all CSRI interns (hired under the CSRI postdoc posting)
were invited to participate by submitting a summary slide as illustrated in Figure 4.1. Other
interns, including interns with other programs, were also invited to submit a slide with
their mentor’s approval. Interns used this event as an opportunity to formalize their work
direction(s), socialize their ideas, and network with other interns and staff across the labs.
The slides from the virtual poster blitz event are published as as SAND report (SAND2020-
7414 PE).
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SUMMER 

2020PROGRAMGuess where most “presenters” are located
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2020PROGRAMLearning Compact Physics-Aware Photocurrent
Models Using Dynamic Mode DecomposiƟon: Results
Intern: Joshua Hanson, University of Illinois, Virtual at: Champaign, IL
Mentors: Biliana Paskaleva (1356 Comp. & Sys. Anal.), Pavel Bochev (1400 Comp. Res.)
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Figure: Normalized photocurrent due to the
training input. Top: FEM and DMD soluƟons.
BoƩom: DMD training error.
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2020PROGRAMA Simple Embedding and Alignment
Intern: Lukas Reynolds, Clarkson University, Virtual at: Potsdam, NY
Mentor: Mohan Sarovar, 8759 Extreme-Scale Data Science & AnalyƟcs

MulƟ-Dimensional Scaling takes in the

pairwise Euclidean distances between

data points and provides the best

k-dimensional linear embedding via the

k-rank SVD of the double-centered

Gramian Matrix.

The Iteratve Closest Point algorithm aligns

two data clouds by matching points and

finding the best rigid transformaƟon that

aligns them, repeaƟng the process unƟl

the ending criteria is met.

45

Fig. 4.1: Example slides from the Virtual Poster Blitz event.

5. Reading Groups. Reading Groups offered students an optional opportunity to
deep dive into recent technical papers in the fields or Artificial Intelligence and Machine
Learning (AI/ML). We would like to thank Siva Rajamanickam (1465) and Eric Cyr (1442)
for organizing and leading the discussions. A list of papers discussed this year are:

• Deep Learning: LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
nature, 521(7553), 436-444.

• LSTM: Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neu-
ral computation, 9(8), 1735-1780.

• Generative Adversarial Nets: Goodfellow, I., Pouget-Abadie, J., Mirza, M.,
Xu, B., Warde-Farley, D., Ozair, S., & Bengio, Y. (2014). Generative adversarial
nets. In Advances in neural information processing systems (pp. 2672-2680).

• Resnet: He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer vision and
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pattern recognition (pp. 770-778).
• Reinforcement learning Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,

L., Van Den Driessche, G., & Dieleman, S. (2016). Mastering the game of Go with
deep neural networks and tree search. nature, 529(7587), 484.

• Batch Normalization: Ioffe, S., & Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal covariate shift. arXiv preprint
arXiv:1502.03167.

• Graph Neural Networks: Kipf, T. N., & Welling, M. (2016). Semi-supervised
classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.

6. D&I Workshop. In collaboration with the Sustailable Horizons Institute (HSI),
we organized a 3-hour workshop on 7/7/2020, entitled “Pathways to Success: Navigating
School & Your Career”. Led by Dr. Mary Ann Leung, this workshop was an online activity
designed to help bridge the virtual gap in the summer experience and facilitate interaction
between interns and mentors. The activity began with a game designed to help participants
get to know each other, followed by an exploration of pathways to a successful career in
Computational Science and Engineering. The workshop included interactive discussion and
visualization of pathways from the past through the present and into the future. Participants
developed insights and concrete approaches for navigating pathways to career success. They
also identified ways to recognize obstacles and resources to overcome them.

Under the unusual virtual work circumstances, the success of the program and its differ-
ent activities hinged on the hard work of enthusiastic students and their dedicated Sandia
technical staff mentors. We, therefore, would like to thank all students and mentors for
their dedication. We would also like to thank Edgar Galvan and Jerry Mcneish (8754) who
coordinated the program activities in California. Furthermore, the CSRI summer program
would not be possible without the administrative support of Celia Montoya, Sandra Port-
lock, Cookie Santamaria, Becky March, as well as Marc Campanozzi from the Skype Large
Meeting team.

Ahmad A. Rushdi
Michael L. Parks

November 1, 2020
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Articles

I. Computational & Applied Mathematics

Computational & Applied Mathematics are concerned with the design, analysis, and imple-
mentation of algorithms to solve mathematical, scientific, or engineering problems. Articles
in this section describe methods to design new nerual network architectures, discretize and
solve partial differential equations, couple multiphysics systems of equations, and analyze
sensitivity & quantify uncertainty in complex systems.

1. Anwar, Vineyard, Severa, Musuvathy, and Cardwell extend Weight Agnostic
Neural Networks (WANN) to search for for spiking circuits, and in doing so
investigate whether spiking circuit motifs can also yield task performance that is
weight agnostic.

2. Bergstrom, Butler, and Wildey demonstrate that a weighted empirical distri-
bution function solving a constrained quadratic optimization problem pro-
duces an approximate observation-consistent solution. They extend the formulation
and solution of the optimization problem to more general cases where parameter
samples are not required to be either iid or from a specified proposal distribution.

3. Fox, Rajamanickam, and Song present a novel multi-resolution convolutional
architecture for learning over concentric 3D spherical feature maps, of
which the single sphere representation is a special case. They highlight the appli-
cability of their method for different types of 3D inputs.

4. Gilbert, Rajamanickam, Madduri, and Acer study graph coarsening methods
for high-performance graph partitioners and PDE solvers. They evaluate the per-
formance of four coarsening methods using: time to generate a full hierarchy of
coarse graphs and bipartitioning cutsize resulting from spectral and FM refinement
methods.

5. Jones and Bosler examine the use of Radial Basis Function (RBF) methods
for interpolation and construction of surface differential operators for the unit
sphere. They present convergence results for the approximation of the Laplace-
Beltrami operator and interpolation of a spherical harmonic.

6. Merritt, Geraci, Eldred, and Portone propose a hybrid MLMC-PCE approach
for Global Sensitivity Analysis (GSA). They use an MLMC sampling strategy
to compute the PCE coefficients, extending the applicability of the PCE-based GSA
analysis to expensive high-dimensional problems.

7. Morales and DiPietro introduce a finite element form of the Monge-Ampère
equation, specifically in nonvariational form, using Intrelab, a subdirectory of the
Trilinos package Intrepid. They present convergence studies of using the nonva-
riational finite element method for elliptic problems that cannot be put into the
standard variational form.

8. Myers, Dunlavy, Teranishi, and Hollman examine the sensitivity of the SparTen
high performance sparse Tensor Decomposition software. They experiment
with sensitivity and computational issues on three benchmark tensor data sets, on
several different CPU architectures, in order to establish generalized profiles of
algorithm convergence behavior.
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9. Olson, Gulian, and D’Elia investigate the relationship between tempered and
truncated fractional operators and the unified nonlocal diffusion operator
and examine computationally cheap alternatives to tempered fractional operators.

10. Voronin, Tuminaro, Olson, and MacLachlan develop practical and theoretical guid-
ance into different multigrid preconditioners for systems of partial differ-
ential equations. They experiment with several Algebraic MultiGrid (AMG)
variants, showing significantly different convergence histories.

A.A. Rushdi
M.L. Parks

November 1, 2020
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EVOLVING SPIKING CIRCUIT MOTIFS USING WEIGHT AGNOSTIC
NEURAL NETWORKS

ABRAR ANWAR∗, CRAIG M. VINEYARD† , WILLIAM M. SEVERA‡ , SRIDEEP MUSUVATHY§ ,

AND SUMA CARDWELL¶

Abstract. Neural networks have increasingly been applied as state-of-the-art solutions to tasks ranging
from image and video analysis, to natural language processing, to strategic planning and control. These
investigations have yielded many different neural network architectures as various optimizations are pursued
with the objectives of improved performance as well as to improve computational costs. Furthering this
exploration, neural architecture search (NAS) has emerged as an algorithmic method of developing neural
network architectures. Weight Agnostic Neural Network (WANN) is an evolutionary-based NAS approach.
Fundamentally, WANN pursues circuit motifs which enable decent performance on tasks largely due to the
network structures that are relatively insensitive to weights and typically much smaller than an equivalent
performance dense network. Here we extend the WANN framework to search for spiking circuits, and in
doing so investigate whether spiking circuit motifs can also yield task performance that is weight agnostic.
In doing so, we analyze properties such as the the complexity of the solution and performance. Our results
successfully show the performance of spiking WANNs on several exemplar tasks.

1. Introduction. Neural networks are becoming exceedingly commonplace; however,
limitations of traditional hardware which neural networks run on are becoming apparent,
specifically in the low-power domain. For edge computing applications, such as drones,
satellites, and micro-robots, running larger neural networks is not feasible due to the energy
cost. Neuromorphic computing introduces a new paradigm for computing that is brain
inspired with an added benefit of low energy usage.

In many cases, neural networks tend to be overparameterized. Recently, a shift towards
pruning deep neural networks to make them sparser has become common. In addition,
NAS has also been effective in finding architectures that reduce complexity and increase
performance of neural networks [7, 22, 13, 5]. For spiking neural networks, Evolutionary
Optimization for Neuromorphic Systems (EONS) [17] is such an approach to generate spik-
ing neural networks. Recent work in searching for sparse topologies for various tasks in
classical neural networks showed that neural network weight training can be skipped, as a
universal parameter sharing approach is effective in evaluating the success of a potential
network topology. We use this approach to find topologies in spiking neural networks for
solving MNIST, swingup cartpole, bipedal walker, and Atari Atlantis problems. This work
provides evidence that spiking networks benefit from weight agnostic graph structures in
the same way scalar-weight networks do.

In Section 2, we provide a short background on neuromorphic computing, spiking net-
works, neural architecture methods, and Weight Agnostic Neural Networks. In Section 3,
we define the spiking WANN, followed by the results on various tasks in Section 4. Lastly,
Section 5 discusses considerations for future applications and work on spiking WANNs.

2. Background.

2.1. Neuromorphic Computing. Neuromorphic computing relies on event-based
spiking communication between neurons. Conversely, a typical artificial neural network
(ANN) relies on dense communication of continuous values. In order for ANNs to work
with this new paradigm, they must be converted into spiking neural networks (SNNs). The

∗University of Texas at Austin, abraranwar@utexas.edu
†Sandia National Laboratories, cmviney@sandia.gov
‡Sandia National Laboratories, wmsever@sandia.gov
§Sandia National Laboratories, smusuva@sandia.gov
¶Sandia National Laboratories, sgcardw@sandia.gov



4 Evolving Spiking Circuit Motifs

main motivation motivation for this difference is the promise of energy-efficient compute
evidenced by biological systems. Hence SNNs try to replicate this by communicating in a
fashion loosely inspired by biological neurons. We can define a spiking neuron computation
by a threshold activation function. Although a binary threshold ANN is not strictly an
SNN as it does not include the temporal domain, since it is compatible with neuromorphic
hardware, it is referred to as such. Severa et al. [18] noted that converting ANNs to SNNs
for neuromorphic computing is a non-trivial process, thus they iteratively sharpen various
activation functions to be binary. We show that evolved weight agnostic neural networks
with binary activation functions perform well and should be suitable to be transferred onto
neuromorphic hardware.

2.2. Lottery Ticket Hypothesis and Network Pruning. Network pruning focuses
on removing connections to create sparse networks that have a smaller number of connections
and weights. Pruning typically requires prior training, and then reducing the number of
weights [2]. The lottery ticket hypothesis solves the difficult problem of training sparse
networks. It states that a randomly initialized neural network has a sparse subnetwork that
performs just as well, if not better than its dense counterpart [8]. Building on this finding,
it was discovered that these pruned networks perform better than chance with randomly
initialized weights [21], further supporting the idea that the network topology influences
performance.

2.3. Neural Architecture Search. In contrast to pruning methods, the goal of neu-
ral architecture search (NAS) is to learn a network topology that can achieve good per-
formance on certain tasks, while sometimes ensuring a lower number of parameters. Zoph
and Le’s [22] pioneering work in NAS showed the intense computational resources needed
to generate accurate neural networks due to the large search spaces. Most NAS approaches
are split into three separate components: the search space, the search algorithm, and the
evaluation strategy [7]. The search space consists of a set of operations such as convolutions
or pooling layers and how these operators can be appended to form network topologies.
The search algorithm is how NAS methods selects candidates from a population of network
architectures and how they optimize these candidates. The evaluation strategy is where the
performance of the models are evaluated, either by actually running the network or using
some other metrics to estimate performance.

Typically, during the evaluation stage, if the algorithm needs to evaluate a test set, the
network to first undergo training. This makes the evaluation strategy the most expensive
part of the operation. Parameter sharing is one approach used to gain a speed up [15],
where child models share parameters with their parent. Brock et al. [3] uses a HyperNet
[10] to generate weights based on the encoding of the network architecture parameters.
Weight agnostic neural networks (WANNs) [9] take an approach inspired by evolutionary
methods to evolve neural network topologies, focusing on individual nodes rather than a set
of operations.

2.4. Weight Agnostic Neural Networks. Weight agnostic neural networks are in-
spired by the fact precocial species can accomplish several tasks at birth, such as duck
hatchlings being able to swim and eat [20]. WANNs follow an iterative topology search
algorithm inspired by the NEAT evolutionary search method [19]. In most architecture
search approaches, each generated topology requires individual weight training, which tends
to be the most expensive portion of the algorithm. WANNs show that the network topology
is important by enforcing weight-sharing across the whole network. Rather evaluating a
network by its performance on a test set after training, WANNs evaluate on a set of shared
weight values.
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Fig. 2.1: Visualization of topology search used to evolove WANNs. Sourced from WANN
paper [9]

To detail the approach in Figure 2.1, the algorithm goes as follows:

1. A population of various network topologies are generated.
2. For reinforcement learning/control tasks, the network runs through several rollouts,

each using a different shared weight value. For classification, it simply evaluates
the training set using the various shared weight values.

3. The networks are ranked in regards to their average performance and the number
of connections as a loose estimate of model complexity.

4. The top networks reproduce by adding or mutating connections and activation
functions.

The ranking process uses the crowding distance metric from Non-Dominated Sorting
Genetic Algorithm II (NSGA-II) [6], an evolutionary approach to multi-objective optimiza-
tion. Two objectives are optimized over: the mean fitness across each of the iterations and
an alternating objective of max fitness and the number of connections. The number of con-
nections is minimized 80% of the time while the max fitness is maximized 20% of the time.
This is to ensure that the network is able to grow in complexity if it leads to increased per-
formance. The best performing network is chosen as the final network; however, there does
exist a Pareto frontier of individual networks between network complexity and performance.

The mutation process involves adding new connections with random activation func-
tions, changing existing activation functions, or adding a connection between two existing
activation functions. The set of available activation functions are linear, step (binary/thresh-
old), sin, cosine, Gaussian, tanh, sigmoid, inverse, absolute value, and ReLU. Though Gaier
and Ha admit that they did not experiment much on the number of activation functions,
they speculated that the variety of activation functions allowed for decent performance from
the WANNs; however, as we will see, simply two activation functions are effective.
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3. Spiking WANNs. The overall approach to generating Spiking WANNs is the same
as the search in Figure 2.1. The evaluation step of the search is highly paralellizable and
is asynchronously evaluated across hundreds of processes. A reduced set of activation func-
tions are used, namely the threshold and linear activation functions. Threshold activation
functions themselves can easily be transferred onto neuromorphic hardware; however when
combined with a linear activation function, they mimic additive dendritic trees and can be
approximated by leaky integrate-and-fire neurons with delays. We recognize that the inputs
and outputs of our network may not be fully spiking; however, this can be overcome using
approximating networks and/or expanding codings.

Fig. 4.1: The three tasks run are the swingup cartpole task [4] (left), the bipedal walker
task [4] (center), and MNIST classification [12] (right)

4. Expiremental Results.

4.1. Tasks. We evaluated primarily four tasks. The first was a cartpole swingup task
[4]. The cartpole task is a classic continuous control problem where a pole starting in an
upright position must be balanced. The swingup version of this task starts in a resting
position with the pole hanging down and needs to be swung upright and balanced, and
unlike its simpler counterpart, cannot be solved using a linear controller. The input is angle
of the pole, sines/cosines of the angle, and the x coordinate. The expected output is the
force of ±1.

The second task was the BipedalWalker-v2 task for OpenAI Gym [4]. The goal of the
task is have a bipedal agent navigate across randomly generated terrain. A positive reward
is awarded for distance, while a negative reward for motor torque is given to ensure efficient
motions are made. The input is the state of the agent, consisting of the various speeds and
positions of different joints and ten LiDAR measurements. Overall, the input consists of 24
dimensions.

The third task was MNIST digit classification [12]. Although for most computer vision
tasks, MNIST is low in dimensionality, due to evolutionary approaches requiring making
connections at random, convergence can take a long time. Standard MNIST is 28x28, which
was reduced to 16x16 to reduce the dimensions.

The fourth task is the Atari Atlantis task, one of the many well-known games in the re-
inforcement learning community. These games became a prominent RL benchmark starting
in 2013 when Mnih et al. [14] published their seminal work on DQN approaches surpassing
human performance.

4.2. Comparison to WANNs. Experiments were run on each task using the same
parameters from the WANN paper, as seen in Table 4.1, to ensure fair comparisons between
them.

The results in Table 4.2 use the reward metric averaged over 100 rollouts for the relevant
control tasks along with their standard deviations for the best evolved network topology.
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Table 4.1: Parameters used for each task

Task # of Generations Population Size
Swingup Cartpole 1024 192
Bipedal Walker 2048 480
MNIST 4096 960

Table 4.2: Results for the various tasks.

WANN
Tuned Shared Weight Tuned Weights # of Connections

Swingup Cartpole 723 ± 16 932 ± 6 62
Bipedal Walker 261 ± 58 322 ± 7 338
MNIST 91.9% 94.2% 1228

Spiking WANN
Tuned Shared Weight Tuned Weights # of Connections

Swingup Cartpole 745 ± 11 912 ± 5 56
Bipedal Walker 290 ± 22 281 ± 31 210
MNIST 87.7% 88.2% 576

For MNIST classification, the accuracy is given on the test set. The tuned shared weight
category is the best shared weight value for the evolved network topology. The tuned
weights is when the network’s weights are individually trained using a population-based
REINFORCE algorithm. The tuned shared weights results are comparable to the original
WANN, but there is a degradation in performance when converting into the spiking-like
WANN. Other ANN to SNN conversion methods have also shown performance degradation
during the switch to threshold activation functions [18].

Interestingly, the tuned shared weights for the spiking WANNs have generally higher
performance than the WANN, but the finetuned weights perform worse. This can potentially
be attributed to fewer number of weights to finetune, as we see spiking WANNs consistently
generate smaller networks.

4.3. Classification. With good results on reinforcement learning tasks, Gaier and Ha
explored the capability of WANNs in MNIST classification. They state that classification is
unforgiving, as the algorithm is either right or wrong; there is no possibility of recovery as
there is in an episode in RL tasks. Table 4.2 shows the performance to be worse across the
board for the classification task. Again, this might be related to the significantly smaller
sized network generated by the spiking WANN.

4.4. Multi-Objective Optimization. Although all results in Table 4.2 show the
best individual, there exists a set of Pareto-optimal solutions since it’s a multi-objective
optimization problem. Figure 4.2 shows all individuals over the evolutionary process. We
can see a Pareto frontier develop on the right hand side of the graph, as we are minimizing
the number of connections and maximizing the mean fitness. As generations increase, we see
the number of connections are increasing, which is easily noticable by the gradient towards
red. The charts only plot the mean fitness and the number of connections; however, the
algorithm does an alternating objective optimization, where 20% of the time, the number
of connections objective is swapped out with a maximization of peak fitness. This is to
encourage growth in the number of connections, as well as performance.
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Fig. 4.2: Fitnesses of individuals across multiple generations. The color map is from yellow
to red, where the more red a point is, the later generation it comes from

Table 4.3: Results for Atari Atlantis task. Average Human and Random Agents results
sourced from [1]. DQN and HyperNEAT results sourced from [16].

Game Spiking WANN Average Human Random Agent DQN HyperNEAT
Atlantis 51180.0 29028.1 12850.0 76108.0 61260.0

The color gradient for the cartpole swingup task looks odd due to the lack of a gradi-
ent. This is because the cartpole task reached its objective significantly earlier, as seen in
Figure 4.3. We see a clear correlation between the number of connections and the fitness
values. This is further justification on why the agent is encouraged to ignore the number of
connections a certain percentage of the time.

Fig. 4.3: Peak fitness and number of connections for the best individual in each generation.
The red peak fitness lines’ score is on the left while the number of connections is blue and
on the right hand side.

4.5. Atari. Testing on the Atari game, Atlantis, we were able to see that, even without
considerable extensions, WANNs are capable of achieving DQN-like performance at the
fraction of the computational cost. Due to the high dimensionality of the frames, the input
was fed through a ResNet trained on ImageNet, whose final layer was cut off and fed in as
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Fig. 4.4: Network topologies of the top individuals for the cartpole swingup task (left) and
the bipedal walker task (right).

the input to the WANN. This method would allow the spiking WANN to converge faster
from the smaller input space.

The results, as seen in Table 4.3, shows the reward given for the task across various
agents. The longer the agent is able to play, the performance increases. The Spiking
WANN results are comparable to a DQN, as well as HyperNEAT from Hauskenect et al. [11].
HyperNEAT is a neuroevolution method which evolves an artificial neural network topology
using compositional pattern producing networks, allowing for it to efficiently handle large
input sizes. The spiking WANN score shows a slight loss in performance compared to the
other two methods, but clearly beats a random agent and the average human. The spiking
WANN network for this task is using a shared fixed weight rather than finetuned weights due
to time constraints. A slight performance boost should occur if the weights are individually
trained, as seen in the previous tasks. In addition, the performance of the network is after
only 64 generations, where increased generations are likely to increase the performance.

5. Conclusion. We hope to map these, or similar networks, to physical neuromorphic
hardware. Again, some inputs and outputs may not be fully spiking, such as the softmax
operation used for classification tasks. Methods around this will be useful to explore. In
addition, the complexity metric used was the number of connections. This is meant to be a
loose approximation of energy usage, but different target architectures perform differently
with different network topologies. Exploring energy-based constraints by changing the com-
plexity metric to be true to the target platform would allow for neural network-hardware
co-design. In addition, exploring the use of WANNs on a broader set of classification tasks
and reinforcement learning tasks would allow us to evaluate its capabilities. It may be
worthwhile to investigate changing the parameters, as these spiking-like networks have far
fewer activation functions available.

Whetstone refines the activation functions of a typical deep neural network to become
threshold activation functions, which can then be used on neuromorphic hardware. Lever-
aging the representational capabilities of a Whetstone network with a spiking WANN may
increase performance on datasets with large input sizes.

There also exists a potential for noise resilience. The evolutionary process for developing
the network topology ideally generates networks robust to noise, potentially in the input
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space or in the synaptic weights. Future exploration of this domain would make it an ideal
candidate for generating networks on neuromorphic hardware where the weights are noisy.
Spiking WANNs have been shown to perform well on a variety of tasks. Once a spiking
WANN has been implemented onto neuromorphic hardware, we hope to observe significant
power savings and reduced energy consumption compared to its traditional counterparts.

6. Acknowledgment. This work was supported by DOE NA-22 funding at Sandia
National Laboratories.
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ESTIMATING OBSERVATION-CONSISTENT SOLUTIONS USING
WEIGHTED EMPIRICAL DISTRIBUTION FUNCTIONS

KIRANA O. BERGSTROM∗, TROY D. BUTLER† , AND TIM M. WILDEY‡

Abstract. The class of stochastic inverse problems considered in this work involves the characterization
of a probability measure on the input parameters of a computational model whose subsequent push-forward
matches an observed probability measure on specified quantities of interest associated with model outputs.
Such a solution is formally defined by the pullback of the observed probability measure and is therefore re-
ferred to as an observation-consistent solution. A probability measure may be quantitatively characterized
and approximated in several ways. Previous approaches for approximating observation-consistent solutions
relied upon density estimation or set/event approximations. Such approaches are challenging to implement
in scenarios where the number of either simulated or observational data are limited. Separate research has
tackled the problem of estimating push-forward measures under such scenarios by using weighted empirical
distribution functions where the weights are defined as the solution to a constrained quadratic optimization
problem. This leads to the major contributions of this work. We demonstrate that a weighted empiri-
cal distribution function solving a constrained quadratic optimization problem produces an approximate
observation-consistent solution. Additionally, we extend the formulation and solution of the optimization
problem to more general cases where parameter samples are not required to be either independent identically
distributed or from a specified proposal distribution.

1. Introduction. Inverse problems seek to learn information about the parameters
of a model from observed data. The precise nature of the inverse problem depends on
the appropriate characterization of the model, data, uncertainties, etc. In some cases, these
problems are posed deterministically and solved using optimization-based methods. In other
cases, an epistemic characterization of likely parameter values is sought through a Bayesian
formulation. In this paper, we consider a different class of problems where we seek to
determine probabilistic information about the parameters of the model from probabilistic
information of the model outputs. In other words, we seek an aleatoric characterization of
the model inputs given an aleatoric characterization of the observed data. The solution to
this inverse problem is required to be observation-consistent, meaning that the solution to the
inverse problem, defined as a probability distribution on the parameter space, propagates
through the model to a given target distribution on observations. This type of inverse
problem naturally arises in scenarios where the variability in the observations is primarily
due to intrinsic variability in the model inputs rather than measurement noise or error.

Previous approaches to solving this problem either seek to approximate a pullback
measure directly through event approximation in both the input and output spaces [5] or to
use accept-reject sampling based on a (non-parametric) density approximation in the output
space [6]. These approaches are challenging to implement when the number of simulated
data are limited, e.g., when the computational model is expensive to evaluate. Moreover,
there is an implicit assumption that sufficient information exists on observations to specify
either a measure or density (or possibly a family of observed measures or densities).

In this work, we demonstrate that an optimization-based, distribution-matching method
can be used to approximately characterize pullback measures even in scenarios where sim-
ulated or observational data are limited. The method is based on the approach developed
in [1] for approximating push-forward measures by performing a change-of-measure objec-
tive using empirical distribution functions (EDFs) and solving an optimization problem to
determine optimal weights on the simulated output samples. These weights are designed
such that when they are used to form a weighted EDF, they minimize the L2-norm be-
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tween the weighted EDF and a given target distribution function. Such optimal weights are
guaranteed to exist using the L2-norm as this results in a quadratic optimization problem.
Thus, for the case where simulated data are limited, a solution is achievable that is optimal
in an L2-sense. Moreover, the target distribution may be in the form of either a cumulative
distribution function (CDF) or an EDF. Thus, for the case where observational data are
limited, the approach produces an L2-optimal solution associated with the observed EDF.

The optimization-based method developed in [1] assumes that the parameter samples in
the parameter/output sample pairs are random independent identically distributed (i.i.d.)
samples generated from a proposal distribution on the parameter space. This assumption
may not be satisfied when the input/output sample sets are generated offline, possibly in
an unknown or semi-structured manner (e.g., a parameter sweep study or a grid-based
study). Another contribution of this work is the development of a modified version of the
L2-optimal weighting method that can handle arbitrary sets of input/output samples while
incorporating proposal distribution information. This involves a two-stage optimization-
based procedure where L2-optimal weights are first found on the input data and then a
second optimization problem is used to determine optimal weights on the output data. This
second optimization problem includes an additional constraint to maintain the structure
inherited from the first optimization.

The remainder of this paper is organized as follows. Section 2 introduces the model
and the class of inverse problems studied in this paper. Section 3 reviews the L2-optimal
empirical distribution approach developed in [1] and introduces the utilization of this method
to approximately characterize a pullback probability measure. In Section 4, we discuss the
extension of the L2-optimal empirical distribution approach to the more general case with
arbitrary input samples. Applications of the framework are given in Section 5 and our
concluding remarks are in Section 6.

2. A stochastic inverse problem and observation-consistent solutions. Let
(Λ,BΛ) be a measurable space of input parameters of interest for a model, where Λ ⊂ R

p

and BΛ is the Borel σ-algebra of Λ. We consider a function Q that maps parameters
λ ∈ Λ to the quantities of interest (QoI) associated with observable model outputs. Let
D = Q(Λ) ⊂ R

d denote the data space. Assume that Q : Λ → D is a measurable mapping
from the parameter space to the output space (D,BD), where BD is the Borel σ-algebra of
D.

Given a target probability measure, Ptarg, on (D,BD), the stochastic inverse problem
seeks to construct a pullback probability measure, PΛ, on (Λ,BΛ). Such a measure is referred
to as an observation-consistent solution since it has the property that

PΛ(Q−1(A)) = Ptarg(A), ∀A ∈ BD. (2.1)

The disintegration theorem [8] provides insight into the existence, uniqueness, and structure
of a pullback measure. For the purposes of this work, it suffices to say that the disintegration
of a pullback measure is defined in terms of a marginal probability measure that is uniquely
determined by Ptarg and a family of conditional probability measures that must be specified
on the generalized contours given by Q−1(q) for a.e. q ∈ D.

In [5], an ansatz is used to specify the conditional probability measures and probabilities
on the approximate partitioning of contour events are used to estimate a pullback measure.
When the parameter space is high-dimensional or the contour events have complex geometric
structures, naive implementations of this approach can easily require an intractable number
of evaluations of the map. In [6], the push-forward of an initial probability density defined on
(Λ,BΛ) is used to specify conditional probability densities and represent a pullback measure
in terms of an update to the initial density. While the approximation and evaluation of
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densities occur in D, which is often much lower-dimensional than Λ, this may still require
a large number of model evaluations to produce accurate density estimates. Moreover, in
both approaches it is assumed that the target measure/density can be specified analytically
or reasonably approximated from data. Thus, there is a need for new approaches that
can produce accurate, or optimal, approximate characterizations of a pullback probability
measure in data-sparse scenarios.

3. L2-Optimal Weighted Empirical Distribution Functions and Application
to Pullback Measures. We begin with a set of i.i.d. samples, {λ(1), . . . , λ(n)}, from the
proposal distribution on the parameter space that are propagated through the QoI map such
that Q(λ(1)) = q(1), . . . , Q(λ(n)) = q(n). We may then interpret the samples, {q(i), . . . , q(n)},
as a set of n i.i.d. samples from an implicitly defined proposal distribution on the data space.
Using � for the component-wise inequality and I(·) as the standard indicator function, the
empirical distribution function for these samples is defined as

FDprop;n(q) =
1

n

n∑

i=1

I(q(i) � q) (3.1)

and is an unbiased estimator of the true initial CDF FDprop(q) that converges a.e. for all

continuity points as n→∞. We seek weights {w(1), . . . , w(n)} such that the weighted EDF,

FDprop;w(q) =
1

n

n∑

i=1

w(i)
I(q(i) � q), (3.2)

defines a valid probability distribution, and is the closest such distribution in the L2 sense to
the target CDF, FDtarg, on the data space. This is accomplished through a straightforward
application of the method from [1]. We solve the constrained minimization problem

minimize 1
2

∥∥FDtarg(q)− FDprop;w(q)
∥∥2

2
subject to w � 0

1Tw = n,

(3.3)

where the ith component of w is w(i) and the constraints enforce that FDprop;w defines a
valid distribution. In [1], the weighted proposal distribution was shown to converge in the
L1 sense to the target distribution, i.e.,

lim
n→∞

∫

A

∣∣FDtarg(q)− FDprop;w(q)
∣∣ dq = 0, (3.4)

where A is a bounded set representing the support of the target distribution.
We solve the minimization problem (3.3) using the QP solver from the Python package

cvxopt [2]. For ease of presentation, the equations in this section utilize an exact target
CDF FDtarg, but the analysis immediately applies to the case where an EDF, FDtarg;m defined

by m i.i.d. samples from FDtarg, is substituted for this CDF.
Computing the weights on the data space amounts to performing a change-of-measure

from the push-forward of the proposal to the target distribution. By applying the weights
w on the set of parameter samples, we define the weighted EDF on Λ,

FΛprop;w(λ) =
1

n

n∑

i=1

w(i)
I(λ(i) � λ). (3.5)

The motivation for this work is the conjecture that as n → ∞, FΛprop;w converges to the
distribution of a pullback measure with conditional probability measures on generalized
contours uniquely defined by the proposal distribution on Λ.
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3.1. An illustrative example. We consider the following simple problem: Λ =
[−1, 1] × [−1, 1], Q(λ) = λ1 + λ2, and D = [−2, 2]. The proposal distribution on the
parameter space is uniform U(−1, 1) in both directions. The target distribution on the data
space is N (0, 0.08). The result of the optimization on D is shown in the left-plot of Figure
3.1 for a sample size n = 100. We see that FDprop;w is an excellent agreement with the target

CDF. To better illustrate the resulting structure of FΛprop;w, we plot the log-scale of the
weights associated with n = 2500 parameter samples in the right-plot of Figure 3.1.

Fig. 3.1: Distributions on D and log of weights for FΛprop;w on Λ (n = 2500).

In Figure 3.1, we see that optimization weights only need to vary in certain directions
over Λ to allow the target and reweighted target densities to match in D. We refer to these as
the data-informed directions. For this example the data-informed direction is conceptualized
by the line λ1 = λ2, which is orthogonal to the set-valued inverses (i.e., contours) of the QoI
map defined by λ1 + λ2 = q for each q ∈ D. In this direction, we see that the structure of
the weights appears to be approximately normal. This is consistent with the fact that the
weights have been optimized to match a normal target distribution in the data space, and the
marginal distribution in this direction in the parameter space should be the inverse image
of this target distribution since we are approximating a pullback measure. On the other
hand, we see that along the contours of the QoI map defined by the lines λ1 + λ2 = q, the
distributions are approximately uniform. Since the QoI map cannot distinguish between
points belonging to the same contour, the optimization algorithm simply distributes the
updated weights equally to all points sampled within a contour. Similar structures are also
observed using both the event-based [5] and density-based [6] approaches. This suggests
the optimization procedure is producing an approximation to the observation-consistent
solution expected from the disintegration theorem in terms of the marginal and family of
conditional distributions as described in Section 2.

4. Extensions to Arbitrary Sample-sets. In Section 3, the n samples are assumed
to be generated i.i.d. from the initially proposed distribution on the parameter space. Sup-
pose instead we are given a set of n parameter samples {λ(1), . . . , λ(n)} and corresponding
model evaluations {q(i), . . . , q(n)} as above but the samples are not necessarily generated
from the proposal distribution. Such a situation occurs in practice when analyzing results
from a parameter exploration (e.g., a min-to-max sweep) or if we seek to explore alternative
proposal distributions but are restricted to a single set of parameter-output samples due
to a computational budget. We can use the method in Section 3 to find a set of weights
{w(1), . . . , w(n)} that best approximate the target distribution in the data space from the
observed samples. However, the weights computed will then produce the distribution cor-
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responding to the pullback measure that is uniquely defined by FΛsamp, where

FΛsamp;n(λ) =
1

n

n∑

i=1

I(λ(i) � λ) (4.1)

is the EDF of the sample data not the desired proposal EDF. In other words, this pullback
may not have the desired conditional probability structure.

We propose a method that will approximate the desired pullback distribution with
conditional probability structure associated with the proposal distribution. First, we use
the method described in Section 3 on the parameter space to generate a set of initial weights,
{u(1), . . . , u(n)}, that solves the constrained minimization problem

minimize 1
2

∥∥FΛsamp;u(λ)− FΛprop(λ)
∥∥2

2
subject to u � 0

1Tu = n,

(4.2)

where we define FΛsamp;u(λ) as

FΛsamp;u(λ) =
1

n

n∑

i=1

u(i)
I(λ(i) � λ) (4.3)

The constraints in (4.2) are included to ensure that empirical importance weights define a
probability measure. As in Section 3, the minimization problem is strictly convex and has
a unique solution.

Propagating these samples into the data space, the weighted EDF corresponding to
these samples is

FDsamp;u(q) =
1

n

n∑

i=1

u(i)
I(q(i) � q). (4.4)

The goal is to incorporate this initial set of weights into a second optimization problem
that seeks a new set of empirical weights {w(1), . . . , w(n)} solving the following constrained
minimization problem:

minimize 1
2

∥∥∥FDsamp;(u,w)(q)− FDtarg(q)
∥∥∥

2

2
subject to w � 0

1Tw = n,
uTw = n.

(4.5)

where we define the weighted empirical distribution function FDsamp;(u,w) as

FDsamp;(u,w)(q) =
1

n

n∑

i=1

u(i)w(i)
I(q(i) � q). (4.6)

The third constraint uTw = n ensures that the weights {u(1)w(1), . . . , u(n)w(n)} define
a probability distribution. While the second constraint, 1Tw = n, is the subject of ongoing
research, we motivate its inclusion. First observe that removing this constraint implies
that the optimization problem can be equivalently rephrased as optimizing for the modified
weight vector w̃ where the ith component is u(i)w(i). This is subsequently equivalent to
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solving the previous optimization problem assuming i.i.d. samples from the proposal, which
is fundamentally incorrect in this case. The impacts of this are best understood after
discussing the associated solution to the inverse problem. As in Section 3, we will use the
multiplicative weights {u(1)w(1), . . . , u(n)w(n)} computed on D to define a weighted EDF
FΛsamp;(u,w) on the parameter space, where

FΛsamp;(u,w)(λ) =
1

n

n∑

i=1

u(i)w(i)
I(λ(i) � λ). (4.7)

We conjecture that under certain conditions on the sample generating distribution, coupled
with the constraint 1Tw = n, that Fsamp;(u;w) converges to a pullback of the target distri-
bution with conditional probabilities described by the proposal distribution. Note that if
the constraint, 1Tw = n, is not included in the optimization problem (4.5), then this sug-
gests that Fsamp;(u,w) = Fsamp;w̃ will converge to a pullback distribution with conditional
probabilities on generalized contours given by the sample, not the proposal, distribution.

Following the derivation in [1], we can assume the support of the samples is confined to
the unit hypercube and expand the objective function in (4.5) as

1

2

∥∥∥FDsamp;(u,w)(q)− FDtarg(q)
∥∥∥

2

2
=

1

2

∫ 1

0

· · ·
∫ 1

0

(
1

n

n∑

i=1

u(i)w(i)
I(q(i) � q)− FDtarg(q)

)2

dq

=
1

2

∫ 1

0

· · ·
∫ 1

0



(

1

n

n∑

i=1

u(i)w(i)
I(q(i) � q)

)2

−F
D
targ(q)

n

n∑

i=1

u(i)w(i)
I(q(i) � q) + (FDtarg(q))

2

]2

dq.

(4.8)

As in [1], the third term in the integrand is independent of w so it can be discarded. We
consider the first two terms of the optimization statement. The first is equal to

1

2

∫ 1

0

· · ·
∫ 1

0

(
1

n

n∑

i=1

u(i)w(i)
I(q(i) � q)

)2

= (diag(u)w)TH diag(u)w

=
1

2
wTDHDw,

(4.9)

where D = diag(u), H is defined as the Hadamard product H1 ◦ · · · ◦Hd, and

Hk
i,j =

∫ 1

z
(i,j)
k

dqk, (4.10)

for k ∈ {1, . . . , d}, where z
(i,j)
k = max(q

(i)
k , q

(j)
k ) and q

(i)
k is the kth entry of q(i). The second

term in the integrand can be rewritten as

1

2

∫ 1

0

· · ·
∫ 1

0

2FDtarg(q)

n

n∑

i=1

u(i)w(i)
I(q(i) � q)dq = (Dw)T b = wTDb, (4.11)

where the ith entry of b is

bi =
1

n

∫ 1

q
(i)
1

· · ·
∫ 1

q
(i)
d

FDtarg(q)dq. (4.12)
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Thus we have rewritten the optimization problem Eq. (4.5) as

minimize 1
2

(
wTDHDw − 2wTDb

)

subject to w � 0
uTw = n,
1Tw = n.

(4.13)

Note that by fixing w = 1T we recover the original formulation, so the same implementation
can be used to solve either problem.

The Lagrangian of the optimization statement is

L(w, δ,ν) =
1

2

(
wTDHDw − 2wTDb

)
+ δT

([
uT

1T

]
w −

[
n
n

])
− νTw, (4.14)

where δ and ν are vectors of Lagrange multipliers of size n. The optimal solution ŵ then
satisfies the KKT conditions:

∂L(ŵ, δ,ν)

∂w
= 0 = DHDw −Db+ δT

[
uT

1T

]
− ν,

ŵ � 0,

ν � 0,
[
uT

1
T

]
ŵ =

[
n
n

]
,

δ is sign unrestricted,

ν(j)ŵ(j) = 0 ∀j ∈ {1, . . . , n}.

(4.15)

H is symmetric positive definite by definition. If D is a positive diagonal matrix, then
DHD is symmetric positive definite and thus the problem 4.13 is a strictly convex quadratic
program with linear constraints and thus admits a global solution [3]. While D is guaranteed
to be at least positive semi-definite by the constraint in Eq. 4.2 that u � 0, it may have
zero entries if u(j) = 0 for some j. For now, we assume that D is positive definite, or that
there are no zero weights in the first optimization, thus the problem is a strictly convex
quadratic program and admits a global solution.

4.1. An illustrative example. We illustrate the concept with a similar example as in
Section 3.1, but here the samples are drawn uniform in each direction, the proposal distribu-
tion is uniform U(−1, 1) in the λ2 direction of the parameter space, and normal N (0.1, 0.2)
in the λ1 direction. The target distribution is N (0.1, 0.08). The mapping Q and proposal
and target distribution remain the same. The weights for the first optimization on the pa-
rameter space, a straightforward application of the method in [1], is shown in Figure 4.1.
The normal structure in the λ1 direction has been recovered, maintaining uniformity in the
λ2 direction.

After propagating these samples and weights through the model and performing the
second optimization, Figure 4.2 shows the resulting weighted EDF in the data space, which
we can see matches the target distribution well. The resulting weights also appear to preserve
the desired structure on the parameter space well, as in Section 3 we can see the structure
from both the proposal distribution and the observed distribution in each direction.
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Fig. 4.1: Log of initial weights on Λ, n = 2500

Fig. 4.2: Distributions on D and log of weights for FΛprop;w on Λ (n = 2500).

5. Applications. In this section, we consider two applications of interest to Sandia
National Labs, as well as the Department of Energy, Office of Science. The first application
is a physics-based model for steady-state single phase flow in porous media where each
evaluation of the model requires nontrivial computational resources and the goal is to invert
based on observed tracer data. The second application is relevant to scientific machine
learning where we are given a previously trained neural network and some output data
(either from training or testing) and the goal is to infer a distribution on the inputs to the
model that could have generated this data.

5.1. Tracers from single-phase flow in porous media. We first consider a physics-
based model for single phase incompressible flow in porous media. The model represents
3-dimensional flow in a fluvial reservoir where the permeability field is based on the SPE10
dataset and a pressure gradient driving the flow is induced using Dirichlet conditions im-
posing a pressure drop from one side to the other.

The computational domain is Ω = [0, 1200] × [0, 2200] × [0, 100] (unit are ft) and the
permeability is defined on a uniform 60× 220× 50 rectangular grid. While the SPE10 data
set comes with x-, y-, and z-permeabilities, we only utilize the x-permeability to create an
isotropic tensor. Since locally conservative velocities are required for most applications in
porous media, we use a hybridized mixed finite element formulation to construct a numerical
approximation. A full description of this formulation is beyond the scope of this paper, but
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we refer the interested reader to [4] for more details.
ParaView allows us to create tracers to track the flow through the media from certain

starting points. The starting points can be generated as a high resolution line source, we
use the line from (0, 2200, 0) to (1200, 2100, 100). The tracers flow through the media from
the high pressure area at the lower end of the y direction to the low pressure area at the
higher end of the y direction, as shown in Figure 5.1(a). As each tracer flows through the
media, it will either stop at some point, or exit the domain.

(a) Tracers for proposal distribution (b) Starting/ending proposal samples, and ob-
served samples

Fig. 5.1: Tracers in porous media

The parameter space Λ is the three-dimensional line source, and the output space is
the three-dimensional space D of all possible ending points from tracers generated along the
source line. Given a set of target ending points, as well as a set of proposal starting/ending
point pairs, we seek a set of weights on the proposal starting points that approximate a
distribution that pushes forward to the empirical distribution defined by the target ending
points. In Figure 5.1(b), the starting points are uniformly distributed along the blue line,
the ending points are shown in red, and the observed points are shown in black. The
proposal distribution is uniform along the source line, and the target distribution is uniformly
distributed in a box at the lower right corner of the domain. The results of the weighting
on D are shown in Figure 5.2(a). The proposal ending points that are closest in x-distance
to the range of the observation data are weighted heavily and the ending points that are
farther away in x-distance are given smaller weights. The weights on the proposal samples
in Λ and D are shown in Figure 5.2(b), represented by the size of the points.

We see that the majority of the probability is assigned to proposal samples where the
ending points are close, in the x-direction, to the observations. As further confirmation
that our method provides physically meaningful results, we can also perform an experiment
to determine which of the parameters (x, y, or z) are important, by rerunning the analysis
excluding each direction in turn. From Figure 5.3, we can see that the y and z directions are
not informative without the x direction included. This is consistent with our expectations
since the flow is primarily in the x-direction.

5.2. Inferring training data from a neural network. In this section, we consider
a problem relevant to scientific machine learning where the goal is to infer a distribution
on the model inputs given a distribution on model outputs. To that end, we utilize a pre-
viously generated dataset containing 10,000 input-output pairs, where the input space is
100-dimensional and the output space is 3-dimensional and the mapping is nonlinear. We
then use PyTorch to construct a neural network surrogate approximation of the mapping.
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(a) Weights on proposal end points (log scale) (b) Weights on proposal start/end points,
larger points correspond to larger weights

Fig. 5.2: Weighted tracer start/end points for porous media

Fig. 5.3: Weighted EDFs in direction of increasing magnitude on source line

We utilize a network with 5 hidden layers with 80, 60, 40, 20, 10 nodes respectively. The
network is trained using the first 9000 input-output pairs in the dataset and tested against
the remaining 1000 pairs. To avoid randomness in the network due to the utilization of
the stochastic gradient descent algorithm or random starting points for the training/opti-
mization of the neural network, we train the network once, save it and then treat it as a
fixed surrogate model. This is consistent with this idealized scenario where we assume we
are given a previously trained neural network and seek to use this as a surrogate model to
solve a stochastic inverse problem. We are aware that errors in the surrogate model can
lead to errors in the updated distribution, and this was studied extensively in [7] for the
density-based approach, but we leave this issue for future work for the EDF-based approach.

The observed data for our inverse problem is the set of outputs generated from the
training and testing data. Our goal is to both determine a set of weights on the input
samples that define a pullback measure for the distribution defined by the observed data,
and to test if we can infer any information about the data-generating distribution of the
input training data, which is normally distributed in each direction with mean 0 and variance
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1. We show results from two different proposal distributions on the input space. The first
is for a normal distribution (in each parameter) centered at 0 with standard deviation 1.5.
The resulting weights on the data space are shown in Figure 5.4(a). The resulting weights
on the data space for a uniform distribution from −2 to 2 on each parameter in the input
space and are shown in Figure 5.4(b).

(a) Normal proposal (b) Uniform proposal

Fig. 5.4: Weights on D, machine learning application (log-scale)

Using plot of weights or empirical distribution functions on the input space to infer
qualitative information is challenging task on a 100-dimensional space. We can glean some
useful information by estimating the marginal probability densities that correspond to the
marginal weighted EDFs in various input directions. For the normal proposal, we can see
from Figure 5.5(a) that the marginals do not change much from the proposal distribution and
maintain normal structure - indicating that the pullback distribution is roughly equivalent
to the data-generating distribution. For the uniform proposal, the marginals estimated are
very different, as shown in Figure 5.5(b). Although the pullback measure pushes forward
through the model to match the observed distribution, the pullback marginals are not the
same as the data-generating distribution.

(a) Normal proposal (b) Uniform proposal

Fig. 5.5: Marginal densities in the first 20 parameter directions
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6. Conclusions and Future Work. In this work, we have developed an optimization-
based approach for solving observation-consistent stochastic inverse problems. Previous
approaches to solving observation-consistent inversion problems require approximations of
events or densities. We show that we are able to extend the observation-consistent framework
using the optimization-based approach method to cases with limited observational data,
when densities and events cannot be approximated effectively. We have also extended the
solution to problems with arbitrary sampling when we do not have i.i.d. samples from the
proposal distribution. This is an extension to both the observation-consistent framework
and the optimization-based weighted empirical distribution approach developed in [1].

In future work, we aim to formalize a theoretical proof of the stability of the pullback
measure that is defined by the weighted EDF on the parameter space, as well as a theoretical
proof to justify the generalization of the method to the case of arbitrary sample sets. We
are also interested in quantifying the effect of the model form errors on the weighted EDFs
and the corresponding approximations to the pullback measure. Future directions will also
include a utilization of this approach in the context of optimal experimental design and an
exploration of the use of this approach to efficiently perform hierarchical Bayesian inference.
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CONCENTRIC SPHERICAL GNN FOR 3D REPRESENTATION
LEARNING

JAMES FOX∗, SIVASANKARAN RAJAMANICKAM† , AND LE SONG‡

Abstract. Learning 3D representations that generalize well to arbitrarily oriented inputs is a challenge
of practical importance in applications varying from computer vision to physics and chemistry. We propose
a novel multi-resolution convolutional architecture for learning over concentric spherical feature maps, of
which the single sphere representation is a special case. Our hierarchical architecture is based on alternatively
learning to incorporate both intra-sphere and inter-sphere information. We show the applicability of our
method for two different types of 3D inputs, mesh objects, which can be regularly sampled, and point
clouds, which are irregularly distributed. We also propose an efficient mapping of point clouds to concentric
spherical images using radial basis functions, thereby bridging spherical convolutions on grids with general
point clouds. We demonstrate the effectiveness of our approach in achieving state-of-the-art performance
on 3D classification tasks with rotated data.

1. Introduction. While convolutional neural networks have been applied to great
success to 2D images, extending the same success to geometries in 3D has proven more
challenging. A desirable property and challenge in this setting is to learn descriptive repre-
sentations that are also equivariant to any 3D rotation. [3] and [5] showed that the spherical
domain permits learning such rotationally equivariant representations, by defining convo-
lutions with respect to spherical harmonics. In practice, 3D convolutions are implemented
via discretization of the sphere. Earlier spherical CNNs used spherical coordinate grids,
but these discretizations result in non-uniform samplings of the sphere, which is non-ideal.
Furthermore, spherical convolutions defined on these grids scale with O(N1.5) complexity
(N as the number of grid points). Subequent works, [6], [2], [4], designed more scalable
O(N) convolutions focusing on more uniform spherical discretizations.

Existing spherical CNNs operate over a spherical image, resulting from projection of
data to a bounding sphere. We show that is more expressive and general to instead operate
over a concentric, multi-spherical discretization for representing data. Our main innovation
is introducing a new two-phase convolutional scheme for learning over a concentric spheres
representation, by alternating between inter-sphere and intra-sphere convolutional blocks.
We use graph convolutions to incorporate inter-sphere information, and 1D convolutions
to incorporate radial information. Similar to [6],[2], we focus on the icosahedral spherical
discretization, which produces a mostly regular sampling over the sphere. Our proposed
architecture is hierarchical, following the recursive coarsening hierarchy of the icosahedron.
Combinining intra-sphere and inter-sphere convolutions has a conceptual analogy to grad-
ually incorporating information over volumetric sectors. At the same time, our learned
representation retains rotational equivariance from scalable graph-based spherical convolu-
tions.

We demonstrate the effectiveness and generality of our approach through two 3D clas-
sification experiments with different types of input data: mesh objects and general point
clouds. The latter poses an additional challenge for discretizations, as native point clouds
are non-uniformly distributed in 3D space.

To summarize our contributions:
1. We propose a novel multi-sphere icosahedral discretization for representation of

3D data, and show that incorporating the radial dimension can greatly enhance
representation ability over single-sphere representations.

∗Georgia Institute of Technology, jfox43@gatech.edu
†Sandia National Laboratories,srajama@sandia.gov
‡Georgia Institute of Technology, lsong@cc.gatech.edu
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2. We introduce a novel convolutional architecture for multi-sphere discretization by
introducing two different types of convolutions, conceptually separated as intra-
sphere and inter-sphere. Combining graph convolutions (intra-sphere) with 1D
radial convolutions (inter-sphere) leads to an expressive architecture that is also
rotationally equivariant. Our proposed convolutions are also scalable, each being
linear with respect to total grid size.

3. We design new mappings for both 3D mesh objects and general point clouds to the
proposed representation. We achieve state-of-art performance on ModelNet40 point
cloud classification, using the proposed model and a data mapping using radial basis
functions. We also improve on existing Spherical CNN performance in SHREC17
3D mesh classificaiton task by utilizing multi-radius information.

2. Related Work.

2.1. Spherical CNNs. The goal of learning rotationally invariant representations of
3D geometries has led to several ideas for rotationally equivariant convolutions in the spher-
ical domain. [3], [5] defined spherical convolutions that are rotationally equivariant to ro-
tations of the SO(3) group. However, these convolutions are restricted to non-uniform grid
samplings and scale superlinearly with respect to grid resolution. Later works have explored
more scalable convolutions on other spherical discretizations, achieving linear complexity
with respect to grid resolution.

[6] proposed using parameterized differential operators to form convolutional kernels
over the icosahedron, where equivariance is restricted to rotations about the z-axis. [2] pro-
posed gauge equivariant convolutions on manifolds, operating on feature fields corresponding
to underlying geometric entities. This was applied to achieve rotationally equivariant convo-
lutions over the icosahedral discretization. [4] propose a graph convolution-based spherical
CNN using spectral filters, along with a distance-weighted nearest-neighbors graph con-
struction scheme that allows balancing between rotational equivariance and efficiency, when
applied to different types of grids.

Other spherical CNNs have been designed in the context of handling arbitrary point
cloud data, which typically requires first mapping the data to a discretization. [11] uses
graph-convolution inspired message passing oeprators for learning over the icosahedral dis-
cretization. Our work is similar to [11] and [4]) in terms of using graph-based spherical
convolutions, but we generalize to multi-sphere convolutions. [16] is the most related work
in terms of multi-sphere representation learning. The authors propose a spherical voxel
grid, and extending the SO3 convolutions of [3] to incorporate the radial dimension. Our
work treats spherical and radial convolutions as distinct, which observes much better re-
sults in practice. We also use more scalable spherical convolutions defined on the uniform
icosahedral grid.

2.2. Pointwise Convolution Networks. There is a significant body of work on
learning point cloud representations using pointwise convolutions, beginning with with [10]
which proposed learning permutation invariant functions that directly operate on point co-
ordinates. Only more recently have such methods have been developed towards learning
rotationally invariant representations.

[14] and [9] both propose pointwise convolutional filters based on spherical harmonic
functions to achieve rotational equivariance (or invariance). Distance information is recorded
through learned functions in the former, and radial sampling in the latter. While these filters
are defined with respect to all-to-all convolution between points, in practice convolutions
are limited to k-nearest neighbors ([9]) for scalability. [1], [13], [17] all extract rotationally
invariant features (i.e. low-level geometric features such as angles and distances) from the
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point cloud as input to their respective convolutional architectures. These features are
hand-engineered based on carefully picking local frames of references, or global in the case
of [13].

3. Representation by Concentric Spheres. Existing work on spherical CNNs op-
erate on spherical grids, where data is typically projected to and defined on grid points.
However, projecting 3D data to a single sphere may not always be sufficient or appropriate.
Simple projections may be lossy when describing highly non-convex shapes, for instance if
the shape curves in on itself. To increase capacity to distinguish different data distribu-
tions, we introduce a new discretization based on concentric spheres. The introduction of
concentric spheres additionally discretizes 3D space in the radial dimension. Single sphere
discretization is a special case in our proposed paradigm, corresponding to an outermost
bounding radius.

Spherical Discretization. We work with an icosahedral grid discretization of the
sphere, as it (1) has a regular (recursive) construction and (2) results in a largely uniform
sampling over the sphere. The base icosahedron I0 has 12 vertices, forming 20 equilateral
triangle faces (each face with 3 edges). Each vertex is incident with 5 triangles. It can
be recursively refined by subviding each triangle into 4 smaller ones, with the number of
vertices scaling by level as |V | = 10 ∗ 4l + 2. See Fig. 3.2 for icosahedron illustration.

Radial Discretization. We construct a multi-radius discretization for R concentric
spheres by stacking stacking R icosahedral grids. The same spherical discretization is shared
across concentric spheres, enabling efficient convolutions. Assuming unit radius normaliza-
tion, we use a uniform discretization that results in concentric spheres scaled to radiuses
[ 1
R ,

2
R , ..., 1].
Intra-sphere Convolutions.
There is a growing body of work addressing design of rotation-equivariant filters over

spherical feature maps. We focus on graph convolutional filters for intra-sphere convolu-
tions, as graph convolutions are scalable and lead to equivariant representations, up to
discretization effects [4]. While there is a rich body of work on graph-based convolutions
and its variants, this work uses the graph convolution from [7].

This motivates our construction of the undirected graph G(l) = (V (l), E(l)) from a level
l icosahedron Il. Vertices of the vertex set V (l) correspond one-to-one with vertices of
Il projected to unit sphere. E(l) is simply the set of all (bidirectional) face edges of the
icosahedron (projected to unit sphere). Each vertex has a degree of either 5 or 6 in this
construction. Since each edge corresponds to approximately equal distance between two
points of the sphere [15], Gl is also treated as an unweighted graph.

Let t index layer, i ∈ [0, R− 1] index the radial dimension, and u ∈ [0, V − 1] index the
vertices. Also let Z be parameters, g be feature vectors, and σ indicate nonlinear activation
function. The intra-sphere convolution output hi,u is given by Eq. 3.1, where N(u) indicates
adjacent neighbors of vertex u (including u itself).

g
(t+1)
i,u = σ(

∑

v∈N(u)

1√
dudv

Zg
(t)
i,v) (3.1)

The overall complexity of intra-sphere convolution is equivalent to the total grid size O(N),
where N = R ∗ V (l). In practice, R can also be restricted to a relatively small constant.

Inter-sphere Convolutions. We introduce radial convolutions to incorporate inter-
sphere information, implemented as the 1D convolutions over multiple radial representations
of each vertex. Importantly, radial convolutions are also rotationally invariant, as 1D con-
volution operates over channels of the same vertex. See Fig. 3.1 for illustration of radial
and graph convolutions with respect to concentric spheres representation.
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Fig. 3.1: 2D cross-section illustrations of concentric spheres representation. (a) shows an
example point cloud with respect to bounding sphere. (b) zooms in on a particular sector.
Data points are mapped to RBF values defined on vertices, where an expanded discretization
is used. (c) Intra-sphere convolution and (d) inter-sphere convolutions are are applied to the
target vertex (bolded). In reality, intra-sphere convolution on local neighborhood of sphere,
and involves 5 or 6 vertices.

Fig. 3.2: Example multi-radius architecture with R = 3 concentric spheres. Graph convo-
lutions, followed by radial convolutions, are applied over a sequence of discretization levels.
Pooling coarsens the discretization to a lower level. Vertex-wise and radial-wise pooling is
applied to obtain a final representation for classifier. Icosahedron visualization from [12].

We introduce additional notation to describe radial convolutions. Let Z be parameters,
and h feature vectors. Then the inter-sphere convolution output gi,u convolution is given
by Eq. 3.2. K indicates 1D kernel size. We assume K to be odd valued, and pad inputs in
the radial dimension to ensure dimension R is maintained across convolutions.

h
(t+1)
i,u = σ(

bK2 c∑

k=−bK2 c
Wk+bK2 ch

(t)
i+k,u) (3.2)

The overall complexity of intra-sphere convolution is also O(N). Intra-sphere convolutions
require Z parameters and inter-sphere convolutions require K ∗W parameters.

Concentric Spherical GNN Architecture. Fig. 3.2 gives an example illustra-
tion of an end-to-end architecture using both convolutions. Importantly, radial convolution
blocks are introduced alongside graph convolutional blocks at every level of the spherical
discretization hierarchy, to incorporate inter-sphere information gradually. From a icosahe-
dron of level L refinement, we construct a sequences of graphs [GL, GL−1, ..., G0]. Each Gl
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carries an additional R dimension, corresponding to spheres at different radial levels. Each
level l features two blocks of convolutions: graph convolutions, followed by radial convolu-
tion. These correspond to intra-sphere and inter-sphere convolutions respectively. This is
followed by vertex neighborhood pooling, which downsamples the graph from Gl to Gl−1.
The size of the radial dimension remains constant, until final pooling.

4. Point Cloud to Concentric Spherical Signal. We consider the problem of map-
ping a point cloud P ∈ RN×3 point cloud to an initial spherical feature map M ∈ RR×V×F ,
where F is number of input channels. While the concentric grid representation is defined
discretely at fixed positions, the space of data point locations is continuous. We also aim
to capture the distribution of points in a continuous way. To do so, we summarize the
contribution of points using the Gaussian radial basis function:

f(x) =

N∑

j=1

φ(||x− pj ||22) (4.1)

Here N is the number of data points, and φ = exp(−γr2), parameterized by the bandwidth
γ. In practice we limit computation to a local neighborhood (instead of considering all
points), and choose γ accordingly. See Sec. A for additional details.

One possible mapping is to compute Eq. 4.1 at every vertex position xi,u : i ∈ [0, R −
1], u ∈ V of the spherical discretization, resulting in a single channel feature map. However,
it is possible to obtain better resolution in capturing distribution of surrounding points
by further sub-diving the discretized space (taking inspiration from [8]) along the radial
dimension. Subdividing along radial dimension by a factor Ke results in a new spherical
discretization with size R′ = R ∗Ke in the radial dimension. We compute the RBF value
at every vertex position of this new discretization, resulting in a feature map of dimension
of M ′ ∈ RR′×V×1. We then map back to the original discretization by assigning Mi,u =
[M ′j,u : j ∈ (iKe, iKe + 1, ..., 2iKe, 2iKe + 1, ..., 3iKe − 1)], resulting in a [R × V × 2 ∗Ke]
feature map. In other words, to better capture data distribution, multiple RBF values are
assigned to each vertex by further sub-dividing space in the radial dimension.

5. Experiments.

5.1. ModelNet40 Point Cloud Classification. We consider the ModelNet40 3D
shape classification task, with 12308 shapes and 40 classes. Following convention, each
point cloud has 1024 points. For all experiments, 9840 shapes are used for training and
2468 for testing.

Architecture and Hyperparameters. Figure 5.1 shows a complete architecture
overview. Point clouds are first mapped to 16 concentric spheres with level 4 icosahedral
discretization (L = 4, R = 16), using RBF kernels with threshold T = 0.01. 1D convolutions
use a kernel size of 3. Each graph and 1D convolution is followed by batch normalization and
ReLU as nonlinear activation. Additionally, skip connections are added between every graph
convolution layer, whenever input dimension matches output. The model is trained with
Adam optimizer for 30 epochs using initial learning rate of 1e-3, along with learning rate
decay by 0.1 at 15 and 25 epochs. The batch size is 32. Each training epoch took 5 minutes,
while inference (of validation set) took 7-8 seconds. Data loading and transformation times
are included.

Results. We present our results and compare against other related works in Table 5.1,
in four different train/test data orientation settings. When training with rotations, a new
rotation is sampled per instance in each epoch. Rotation is the only augmentation used in
comparisons. We report accuracy as average validation score across last 5 epochs of training,
due to lack of standard validation/test split and to account for variation.
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Fig. 5.1: Architecture for ModelNet40 classification. Input dimension is 16, resulting from
point cloud RBF data mapping. “Gconv” is graph convolution applied over graph connec-
tivity of the sphere. “Conv1d” is 1D convolution, applied over the radial dimension. L
denotes discretization level, as the representation is coarsened following each vertex pooling
step. A final pooling of radial dimension results in a 1024 dimensional vector.

Table 5.1: ModelNet40 classification results, across four train/test data orientation settings.
NR denotes original data (no rotations), z is arbitrary rotation about z axis, and SO3
is arbitrary rotation. For example, SO3/SO3 means training and testing with arbitrary
rotations of the data.

Method Input z/z z/SO3 NR/SO3 SO3/SO3
Pointwise Convolution

PointNet [10] xyz 0.875 0.229 0.081 0.849
ClusterNet [1] xyz 0.8711 0.8711 *2 0.8711

RIConv [17] xyz 0.8651 0.8641 *2 0.8641

SPHNet [9] xyz 0.865 0.856 0.854 0.870
SRINet [13] xyz+normal *2 *2 0.8701 *2

Spherical CNN
SFCNN [11] xyz 0.888 0.831 0.350 0.874
PRIN [16] xyz 0.819 0.765 0.753 0.810

Ours (CSGNN) xyz 0.884 0.874 0.833 0.884

Our method achieves state-of-the-art results in z/SO3 and SO3/SO3 settings, i.e. testing
on arbitrarily rotated data. For more detailed comparison, we loosely categorize compared
works by method into two categories: pointwise convolution networks and spherical CNNs.
Methods in the former category operate directly on data points in 3D space, while methods
in the latter operate on a spherical discretization. Our work is most closely related to
methods in the spherical CNN category.

Similar to our work, PRIN also explored learning a concentric spherical representation
based on extending SO3 convolutions from [3]. Our method is based on separate graph
and radial convolutions, which achieves much better performance in all settings. SFCNN
has similarity to our work using graph convolution-inspired message passing filters, and
hierarchically learning over the icosahedral discretization of the sphere. However, SFCNN
is restricted to a single-sphere representation, and also relies on a PointNet-like learned
module to project points to spherical features. While this learned projection should be able
capture some degree of multi-radius information in the point distribution, best results seem
to be achieved by learning from both intra-sphere and inter-sphere convolutions. Compared
to our approach, SFCNN also has a relatively higher performance gap between z/z and any

1Using numbers reported in respective authors’ paper.
2ClusterNet, RIConv, and SRINet are designed to be strictly rotationally invariant. Nearly identical

performance is expected across all settings (including settings not reported by respective authors).
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SO3 test setting (significantly so for z/SO3 and NR/SO3), which suggests greater difficulty
achieving rotational invariance. CSGNN, similar to SFCNN and PRIN, exhibits some drop
in performance in the z/SO3 and NR/SO3 settings. This could partly be due to effects of
discretization and data mapping. However, this gap is relatively smallest in CSGNN, and
there is essentially no gap in z/z and SO3/SO3 performance.

ClusterNet, RIConv, and SRINet use hand-crafted rotationally invariant geometric fea-
tures as inputs, and so there is negligble to no performance gap in testing with or without
rotations. By contrast, our method largely learns to extract features directly from the input
(outside of an initial step mapping points to vertices). PointNet, unlike the other baselines,
was not designed to be rotationally equivariant. This reflects in the relatively significant dif-
ference in test performance with and without rotations. Even when training with rotations,
and using a learned alignment module that attempts to learn a canonical transformation,
SO3/SO3 performance is not competitive with that of most other baselines.

5.2. SHREC17 3D Shapes. The SCHREC17 task has 51300 3D models and 55
categories. We use the version where all models have been randomly perturbed by rotations.
Here the inputs are not point clouds, but mesh objects. [3],[5] presented a ray-casting scheme
to regularly sample information incident to outermost mesh surfaces and obtain features
maps defined over the spherical discretization. For sufficiently non-convex mesh objects, a
single sphere projection may result in information loss. For example, when a ray is incident
to multiple surfaces occurring at different radii, this information is discarded by existing
methods. We propose a new data mapping that generalizes single sphere representation
to a concentric spherical representation, thereby preserving more information. Fig. B.1 in
appendix shows visual examples of where the proposed representation may be helping.

Representation. Conceptually, we perform ray-casting from multiple concentric spheres
towards the mesh center, where each sphere has been scaled to different radii. Recording 1st
hits from each sphere results in a multi-radius rojection, where we use a uniform [ 1

R ,
2
R , ..., 1]

radii division assuming normalized inputs. We record distance (with respect to outermost
sphere), sin, and cos features from each ray intersection similar to in other related work
(but do not use convex hull information), resulting in 3 features per vertex.

Method F1 Params
Cohen et. al. [3] (equiangular, b = 64) 0.7893 400K3

Esteves et. al. [5] (equiangular, b = 64) 0.7943 500K3

DeepSphere [4] (equiangular, b = 64) 0.7943 190K3

DeepSphere [4] (HEALPix, Nside = 32) 0.8073 190K3

CSGNN (icosahedral, L = 4, R = 1) 0.805 1.3M
CSGNN (icosahedral, L = 4, R = 16) 0.823 2.9M

Table 5.2: SHREC17 classification performance in terms of F1 metric (micro-average). CS-
GNN is our implementation. Equiangular, HEALPix, and icosahedral are different dis-
cretizations of the sphere. CSGNN (this work) uses level 4 icosahedral discretization, R is
number of concentric spheres (specific to this work). “Params” is total model size.

Architecture and Hyperparameters. The architecture for SHREC17 is identical to
the one used for ModelNet40 in Fig. 5.1, with the exception that the input dimension is 3
(corresponding to features obtained from ray-casting). We consider two model variations,
single-sphere (R = 1) and multi-sphere (R = 16). For R = 16, we use a 1D convolution

3Numbers as reported in [4].
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kernel of size 3. For R = 1, we use a 1D convolution kernel of size 1. Note this is equiva-
lent to applying FC layers; we found adding additional FC layers after graph convolutions
helped improve performance in the single-sphere case. Training settings are also same as
for ModelNet40, except learning rate decay is at epochs 10 and 20. For the R = 16 model,
each training epoch took 19 minutes, while inference (of validation set) took approximately
2 minutes. Data loading and transformation times are included.

Results. See Table 5.2 for classification results. The reported metric is F1 micro-
average classification score. Results from three other Spherical CNN works designed for
general rotational equivariance are included for reference. DeepSphere is most similiar to
our work in terms of graph-based spherical convolutions, where the authors explored design
of rotationally-equivariant graph convolutional filters with respect to the type of grid and
neighborhood size. This work focuses graph construction to the icosahedral discretization,
using a minimal set of roughly equidistant neighbors.

We additionally introduce inter-sphere convolutions with concentric spheres, which is
largely orthogonal to the design of intra-sphere representation and convolutions. Single-
sphere (R = 1) CSGNN, a special case of this this work, seems to achieve competitive
performance with other single-sphere baselines. However, it is difficult to draw compara-
tive conclusions in this particular case, due to differences in feature extraction, spherical
discretization type and size, and model size. More significantly, using multiple spheres
(R = 16) achieves 2.2% relative performance improvement over the R = 1 version. It
also seems likely that the concentric spheres approach can be adapted to other spherical
convolutional designs as well, but this is beyond the scope of this work.

5.3. Ablation Study. To study the impact of multi-radius spherical discretization,
we vary the number of radial levels and present results in Table 5.3. ModelNet40 is used for
all ablation experiments. We also use a base model with R = 16 and L = 4, and keep the
number of parameters identical across all cases. For this particular ablation, we use a single
channel, indicator feature map–a special case of the RBF mapping where γ = 0 and F = 1.
This eliminates γ as a tuning parameter when varying R. Adding radial convolutions in
the case of R = 1 is equivalent to adding additional dense layers after graph convolutions.
We use the same architecture in 5.1, except input dimension is 1. Performance consistently
improves with higher radial dimension, peaking at R = 16 with 4.8% relative accuracy
improvement over the R = 1 version. Performance declines for R = 32, which suggests
diminishing returns (as model capacity may need to be increased).

Setting R = 1 R = 4 R = 8 R = 16 R = 32
SO3/SO3 0.839 0.857 0.869 0.879 0.872

Table 5.3: ModelNet40 ablation with number of radial levels (R). Total number of param-
eters is fixed across all settings.

More ablation studies are presented in Table 5.4. We study the impact of varying the ra-
dial kernel size KRC = [1, 3, 5]. KRC = 1 is same as learning representations independently
learned at each radial level. While this still improves over single-sphere representation, using
spatial filters (KRC = [3, 5]) over the radial dimension is important for best performance.
Varying the number of graph and radial convolutional layers per block shows using between
1 and 2 layers per block led to comparable performance. Finally, we compare using either
graph convolutions or radial convolutions. Results suggest that it is essential to combine
both types of convolutions for best performance. Interestingly, restricting to radial convo-
lutions achieves slightly better performance than restricting to graph convolutions over the
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single sphere. This provides further empirical support for the expressiveness of our proposed
representation and radial convolutions.

Setting SO3/SO3
Radial kernel size

KRC = 1, MGC = 1,MRC = 1 0.853
KRC = 3, MGC = 1,MRC = 1 0.880
KRC = 5, MGC = 1,MRC = 1 0.882

Convolution layers
KRC = 3, MGC = 1,MRC = 1 0.880
KRC = 3, MGC = 2,MRC = 2 0.876

Graph convolution only
R = 1, MGC = 1 0.837

Radial convolution only
KRC = 3, MRC = 1 0.845

Table 5.4: Ablation study on ModelNet40. KRC is size of radial convolutional kernel, MGC

and MRC are number of graph and radial convolutional layers per block. R = 16 and L = 4,
unless stated otherwise.

6. Discussion and Conclusions. In this work we proposed a new multi-sphere con-
volutional architecture, CSGNN, for learning rotationally invariant representations of 3D
data. We introduced distinct intra-sphere and inter-sphere convolutions, which can be com-
bined to learn more expressive representations compared to being restricted to single-sphere
representation. Our use of graph and 1D convolutions preserves rotational equivariance,
while achieving linear scalability with respect to size of discretization. We achieve state-of-
the-art performance in ModelNet classification for testing on arbitrary rotations among both
spherical CNN and pointwise convolutional models. We also show that our approach gen-
eralizes to classification of 3D mesh obejcts, by improving on single-sphere representations
for the SHREC17 task.

One avenue of future work is to explore more descriptive mappings of point cloud data
to the discretization. A learned assignment may better learn vertex features for describing
nearby points, for instance. There is also room to explore other kinds of convolutions for
incorporating inter-sphere information, as well as other radial division schemes. Finally,
existing implementations in this work can be more efficient implementations based on using
regular properties of the icosahedral grid, as opposed to using a general graph construction.
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Appendix A. Point Cloud to Spherical Signal. Instead of for each vertex summing
over RBF values with respect to all points, for each point we update the features of vertices
in its local neighborhood. This is more efficient when the number of points is less than the
number of vertices. Ignoring boundary conditions and degenerate cases, any given point p
is contained within two bounding “triangles” of the discretization, corresponding to vertices
(u(i), v(i), w(i)) and (u(i+1), v(i+1), w(i+1)), where i indicates radial level. We define this as
the local neighborhood of p. In this case, we can compute Eq. 4.1 with respect to each
neighboring vertex and update accordingly. However, using a single γ value for the Gaussian
RBF would result in scaling inconsistency: distances between vertices progressively shrink
as we move towards inner spheres. Based on the assumption that RBF values should be
invariant to scale, we determine a different γ and corresponding RBF depending on radial
level. This is determined by first computing the maximum distance dmax between any 6
vertices of the two bounding triangles, and using dmax to select γ. Specifically, we pick γ
such that γ = − log T

d2max
, where T is a lower bound target RBF value (tuning parameter). For

example, T = 1 would correspond to γ = 0, or a RBF value of 1 for any distance. Note
that distances between the bounding vertices (u(i), v(i), w(i)) and (u(i+1), v(i+1), w(i+1)) are
approximately equal across the same radius level, and so we consistently use one as reference
for computing γ.

Appendix B. SHREC17 Visualization. SHREC17 mis-predicted class pairs from
single-sphere model are shown in Figure B.1.
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(a) Remote (b) Watercraft

(c) Cabinet (d) Table

(e) Lamp (f) Tower

(g) Dish washer (h) File cabinet

Fig. B.1: SHREC17 mis-predicted class pairs from single-sphere model, where multi-sphere
model showed biggest relative improvement. Each image is a representative sample from
the class. Note that watercraft, table, and tower all have more non-convex features that
distinguish them from their mis-predicted counterparts. The concentric spherical model
seems to better capture these differences.
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PERFORMANCE-PORTABLE GRAPH COARSENING METHODS WITH
FINE-GRAINED PARALLELISM

MICHAEL S. GILBERT∗, KAMESH MADDURI† , SEHER ACER‡ , AND SIVASANKARAN

RAJAMANICKAM§

Abstract. Graph coarsening methods are an important component of high-performance graph parti-
tioners and PDE solvers. We focus on their impact on graph partitioning, and evaluate the performance
of four coarsening methods using two metrics: the time to generate a full hierarchy of coarse graphs, and
bipartitioning cutsize resulting from spectral and FM refinement methods. Using a set of large graphs from
the SuiteSparse repository, we analyze performance trends using these metrics and compare various coars-
ening methods. Additionally, we present fine-grained parallel implementations of each coarsening method,
and evaluate scaling results and GPU performance.

1. Introduction. Multilevel methods have been an indispensable tool in the task of
graph partitioning since their first applications to the problem in the 1990s. Hendrickson
et al. [10] and Karypis et al. [13] demonstrated that this methodology is applicable to a
large variety of different graph types. The concept is simple: first, approximate an input
graph using a hierarchy of monotonically smaller graphs. Second, compute a solution (ei-
ther a partition or an eigenvector of the graph if using spectral methods) on the smallest
graph. Third, project the solution backwards across the hierarchy, performing refinement
as needed. See Figure 1.1 for an illustration of this methodology.

Each of these three phases can be done in a variety of ways, and each presents its own
challenges when attempting fine-grained parallelism. Bell et al. [2] demonstrate an end-to-
end fine-grained parallel method for a multilevel partitioner. We intend to focus on just
the first step, graph coarsening, as it is broadly applicable to graph partitioners such as
SPHYNX [1] and several available in Zoltan2 [3], multigrid methods such as MueLu [11],
and domain decompisition methods such as FROSch [9] (utilizes two levels). We want to
answer the following two questions in the context of fine-grained parallel implementations
on GPUs: which coarsening method produces a hierarchy of coarse graphs quickly? Which
coarsening method produces the highest-quality hierarchy of coarse graphs?

We have built our implementation using the Kokkos [7] library, which enables develop-
ers to write applications once and to compile separately for GPUs or CPUs. It provides
access to parallel primitives including reductions, mappings, and scans. Additionally, it en-
ables hierarchical parallelism, essentially parallel primitives embedded within other parallel
primitives, which can increase the amount of parallelism in a program. This is especially
important for GPUs. Kokkos also makes addressing heterogeneous memory simple with its
“views”, which are managed-memory arrays. Each view automatically resides on the default
device (chosen at compile time).

Our contributions are as follows:

• Fine-grained parallel algorithms for the HEC [16], HEM [13], and MT-Metis [15]
coarsening heuristics,

• A fine-grained parallel algorithm for coarse graph construction,
• GPU performance comparison of three aforementioned heuristics plus MIS-2 [2],
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Fig. 1.1: An illustration of multilevel partitioning from the Metis User Manual [12]

• Cutsize comparison of four coarsening heuristics using both FM refinement and
spectral partitioning,

• A comparison of cut quality between FM refinement and spectral partitioning,
• A full integration of each GPU coarsening scheme with both FM refinement and

spectral partitioning, and
• A full end-to-end graph partitioner on a GPU.

2. Related Work. The analysis of coarsening methods in [4] divides coarsening schemes
into two classes: strict aggregation and weighted aggregation. In strict aggregation schemes,
each fine vertex belongs entirely to a single coarse vertex, whereas in weighted aggregation,
each fine vertex may belong to multiple coarse vertices by fractional weights that sum to
1. In this work, we are solely considering strict aggregation schemes, as our preliminary ex-
periments found that weighted aggregation schemes led to explosive growth in the number
of non-zeros between each coarse level. Certain implementations of weighted aggregation
schemes such as the one presented in [14] make efforts to limit the total number of coarse
vertices a fine vertex can belong to, to preserve sparsity. Regardless, we found that our
preliminary implementation of such methods could not scale to the large graphs in our test
set.
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A variety of strict aggregation coarsening methods exist, and these can be further divided
by their ability to avoid “stall” conditions. We use the definition of stall given by Davis
et al. [5]. A stall occurs when the number of coarsening iterations required to reduce the
vertex count below some threshold becomes proportional to the maximum degree of ver-
tices in the graph. Certain graphs are prone to cause stalling, especially power-law graphs
that contain very high-degree vertices. Under practical time limitations, stalls introduce
hard constraints on how much these graphs can coarsen. Stalls create a situation where the
smallest (coarsest) graph is larger than the chosen threshold, potentially by several orders
of magnitude. Davis et al. [5] show results that illustrate a clear cutsize benefit for their
stall-free coarsening, and there is reason to believe that this is due to an increased difficulty
in finding good initial partitions on these larger graphs.

One of the most important coarsening methods is vertex matching. In such matchings,
two vertices may only be matched if they are connected by an edge, and many implementa-
tions use maximal matchings [13, 15, 5]. As there is no general lower bound for how small a
maximal matching can be, this method is not stall-free. The creators of Metis [13], a pop-
ular graph partitioning library, considered four heuristics for creating maximal matchings:
random matchings, heavy-edge matchings (HEM), light-edge matchings, and heavy-clique
matchings. They found that each method produced similar partition quality, but found
that HEM consistently required the least total time between coarsening and uncoarsening
phases. The HEM implementation by Karypis and Kumar [13] is serial, and LaSalle et
al. [15] give a multicore implementation. In this work we demonstrate a fully fine-grained
parallel implementation applicable to GPUs.

The aforementationed work by LaSalle et al. [15] also improved upon HEM to create a
stall-free variation. They considered two-hop matches, which are matches between two ver-
tices that are connected by an intermediary vertex. Among two-hop matches, they specify
three sub-classes: leaves, twins, and relatives. This augmented version of HEM first per-
forms HEM, and if the ratio of unmatched vertices to total vertices is greater than some
threshold, it then performs leaf matches, then twins, and then relatives. If the ratio falls
below the threshold at any point, the coarsening iteration finishes. The implementation by
LaSalle et al. targets multicore systems, and in this work we target GPUs.

Another coarsening method similar to HEM that shows promise is detailed by Urschel
et al. [16], which we denote as HEC. This method removes the strict matching criterion
and allows aggregates to form from more than two vertices during each iteration. Instead of
matching, each vertex chooses a neighbor adjacent on its heaviest edge to aggregate with,
and any number of vertices may participate in each aggregate. Just as a maximal matching
has no lower bound in size, so too does the quantity of aggregates produced by HEC. This
means that the coarsening may happen arbitrarily quickly, but each coarsening iteration
always cuts the number of vertices by at least half. The implementation by Urschel et al.
[16] is serial, so we improve upon this with a fine-grained parallel implementation.

The final method we evaluate is the distance-2 maximal independent set (MIS-2) that Bell
et al. [2] implemented successfully with fine-grained parallelism. The coarse aggregates are
chosen as a subset of the vertices of the fine graph, such that no two aggregates are within
a distance of 2 of each other. Each fine vertex is assigned to the nearest aggregate, with
ties broken arbitrarily. This is yet another method to achieve stall-free coarsening, and is
also the most aggressive. Additionally, it does not consider the edge weights, which contain
substantial information about the graph structure, especially in the coarser graphs. We
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choose to evaluate this method to compare to our own fine-grained parallel algorithms, as
the existing implementation is already fine-grained parallel.

3. Fine-grained Parallel Algorithms for Coarsening Methods. We illustrate
our implementation details, with attention to where parallelism is possible.

3.1. Heavy Edge Coarsening (HEC). The HEC algorithm [16] consists of two
steps. First, for a graph G(V,E), HEC computes the set of edges H ⊂ E, which contains
the heaviest edge adjacent to each vertex. Second, the algorithm traverses the edges in H
in a random order, and contracts each edge (u, v) if the source vertex u has not previously
participated in a contraction. We generate H using fine-grained parallelism by parallelizing
over the source vertices. The edges belonging to each source vertex can be processed in
serial, or a parallel argmax reduction may be performed for extra parallelism. We find it
convenient to represent H as a many-to-one mapping vector, with each index representing
the u and each value representing the v. Fine-grained parallelism in the task of traversing H
and performing the contractions is not trivial. To perform a contraction of an edge (u, v),
we must ensure that u has never previously participated in a contraction. We could do
this with locks, but this did not scale well in our experiments. We show an alternative in
Algorithm 1. An execution unit must acquire ownership of both u and v, upon which it
generates a new coarse vertex and assigns it to both u and v. If an execution unit can
acquire ownership of u but not v, it checks if v has already been assigned a coarse vertex. If
this is true, u inherits the coarse vertex of v, otherwise the execution unit releases ownership
of u. We parallelize over the source vertices, so any attempt to acquire ownership of u may
only fail if some other execution unit has already assigned a coarse vertex to u.

In a cleanup pass, we check which vertices have not been assigned a coarse vertex, and
mark them for reprocessing in the next iteration. The algorithm is done when no vertices are
marked for reprocessing. It is possible for cyclical ownership conflicts to occur among the
edges in H (all edges in the cycle must have the same weight), so we impose an ordering (not
shown in algorithm 1) on the vertices that determines which edges in H may be processed
in a given iteration. We find that this algorithm requires at O(iter × |V |) time. Only
unaggregated vertices are checked in every pass, but in the worst case where we aggregate
only one vertex in a pass, the number of passes needed could be |V |.

3.2. Heavy Edge Matching (Matching). Heavy edge matching shares many of the
same implementation details as HEC, as matches occur on the same H ⊂ E. However, if
some (u, v) ∈ H can’t be matched because v is already matched, a secondary H1 ⊂ E \H is
used. In practice we do not explicitly create a new H1, and instead modify the existing H.
The need to recompute entries of H is the primary difference in implementation between
HEC and matching. This leads to Algorithm 2, given a starting heaviest-edge neighbor
vector H:
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Algorithm 1 Lock-free Parallel HEC construction

Require: Undirected and connected G(V,E,W ). n = |V |.
Ensure: M [1..n], nc.

1: P [1..n]← ParGenPerm(n) . parallel sort-based
2: H[1..n]← 0
3: for u← 1 to n in parallel do
4: w ← 0
5: for each v adjacent to u do
6: if W (u, v) > w then
7: w ←W (u, v)
8: H[u]← v
9: end if

10: end for
11: end for
12: C[1..n]← 0, M [1..n]← 0, Q← P , nc ← 1
13: for i← 1 to |Q| in parallel do
14: u← Q[i], v ← H[u]
15: if C[u] = 0 then
16: if AtomicCAS(C[u], 0, v) = 0 then
17: if AtomicCAS(C[v], 0, u) = 0 then
18: m← AtomicIncr(nc)
19: M [u]← m, M [v]← m
20: else
21: if M [v] 6= 0 then
22: M [u]←M [v]
23: else
24: C[u]← 0
25: end if
26: end if
27: end if
28: end if
29: end for
30: R[1..|Q|]← 0
31: for i← 1 to |Q| in parallel do
32: u← Q[i]
33: if M [u] = 0 then
34: Atomically add u to R
35: end if
36: end for
37: if |R| > 0 then
38: Q← NonZeroEntries(R)
39: go to line 10
40: end if
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Algorithm 2 Lock-free Parallel HEM construction

Require: G(V,E,W ). n = |V |. H[1..n].
Ensure: M [1..n].

1: (P and H are computed as in Alg. 1.)
2: M [1..n], O[1..n]← 0
3: for i← 1 to n in parallel do
4: O[P [i]]← i . O is the inverse of P
5: end for
6: C[1..n]← 0
7: nc ← 1
8: U ← P
9: swap ← 0

10: while U 6= ∅ do
11: for u ∈ U in parallel do
12: v ← H[u]
13: if (O[u] < O[v]) ⊕ swap then
14: if AtomicCAS(C[u], 0, v) = 0 then
15: if AtomicCAS(C[v], 0, u) = 0 then
16: m← AtomicIncr(nc)
17: M [u]← m
18: M [v]← m
19: else
20: C[u]← 0
21: end if
22: end if
23: end if
24: end for
25: R← ∅
26: for u ∈ U in parallel do
27: if M [u] = 0 then
28: v ← HeaviestUnmatchedNeighbor(u)
29: if v 6= 0 then
30: H[u]← v
31: R← R ∪ {u}
32: end if
33: end if
34: end for
35: U ← R
36: swap ← 1 ⊕ swap
37: end while
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Algorithm 2 differs from Algorithm 1 in two ways. The first difference is the action taken
if the execution unit fails to acquire ownership of v. Algorithm 2 simply releases ownership
of u, whereas algorithm 1 checks if v has a coarse vertex. The second difference is in how
vertices are marked for reprocessing. In addition to having no coarse vertex assignment,
each u must have some remaining unmatched neighbor. If this is true, H[u] is reassigned to
the heaviest remaining unmatched edge. As this algorithm computes a matching, it is likely
that many vertices will remain unmatched. We assign these vertices to singleton coarse
vertices.

3.3. MT Metis Optimizations. The MT Metis (abbreviated MT hereafter) opti-
mizations [15] build upon a heavy-edge matching with three types of two-hop matches, for
the purpose of reducing coarsening stalls. These three types are leaves, twins and relatives,
where:

leaves ⊂ twins ⊂ relatives. (3.1)

A relative is any 2-hop match. Twins are relative matches between vertices with identical
adjacency lists. Leaves are twins where both vertices have a singular adjacency. The process
for assigning coarse vertices proceeds in five phases. If more than 75% of the vertices have
been assigned a coarse vertex after any one of the phases, then the process skips to the final
phase. In the first phase is the heavy edge matching, which is conducted as in algorithm 2.
Leaves, twins, and relatives correspond to the second, third, and fourth phases respectively.
In the fifth phase, we assign the remaining vertices to singleton aggregates. See Algorithm
3 for an overview.

Algorithm 3 MT-Metis Optimization Aggregation

Require: G(V,E,W ). n = |V |.
Ensure: aggregate mapping M [1..n]

1: M ← HEM(G(V,E,W ))
2: if aggregated ratio(G(V,E,W ),M) < .75 then
3: M ← leaves(G(V,E,W ),M)
4: end if
5: if aggregated ratio(G(V,E,W ), C) < .75 then
6: M ← twins(G(V,E,W ),M)
7: end if
8: if aggregated ratio(G(V,E,W ), C) < .75 then
9: M ← relatives(G(V,E,W ),M)

10: end if
11: M ← singletons(G(V,E,W ),M)
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Algorithm 4 Parallel Leaf mapping construction

Require: G(V,E,W ). M [1..n]. n = |V |. nc.
Ensure: M [1..n]. nc.

1: for u← 1 to n in parallel do
2: if M [u] 6= 0 then
3: lastLeaf ← 0
4: for each v adjacent to u do
5: if number of v adjacencies is 1 then
6: if lastLeaf 6= 0 then
7: m← AtomicIncr(nc)
8: M [v]← m
9: M [lastLeaf]← m

10: lastLeaf ← 0
11: else
12: lastLeaf ← v
13: end if
14: end if
15: end for
16: end if
17: end for

Algorithm 5 Parallel Twin mapping construction

Require: G(V,E,W ). M [1..n]. n = |V |. nc.
Ensure: M [1..n]. nc.

1: H[1..n]← 0
2: for u← 1 to n in parallel do
3: if M [u] = 0 then
4: hash ← 0
5: for each v adjacent to u do
6: hash ← hash + hash-function(v)
7: end for
8: H[u]← hash
9: else

10: H[u]← hash
11: end if
12: end for
13: Hs, Vs ← radix-sort-V-and-H-by-H(H,V )
14: for scan from i← 1 to n in parallel do
15: if Hs[i] 6= Hs[i− 1] then
16: scan ← max(scan, i)
17: end if
18: if i > scan and i− scan is odd and Hs[i] 6= 0 then
19: m← AtomicIncr(nc)
20: M [Vs[i]]← m
21: M [Vs[i− 1]]← m
22: end if
23: end for
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Algorithm 6 Parallel Relative mapping construction

Require: G(V,E,W ). M [1..n]. n = |V |. nc.
Ensure: M [1..n]. nc.

1: H[1..n]← 0
2: continue ← 1
3: while continue do
4: for u← 1 to n in parallel do
5: if M [u] 6= 0 then
6: last ← 0
7: for each v adjacent to u do
8: if M [v] = 0 then
9: if last 6= NULL then

10: H[v]← last
11: H[last]← v
12: last ← 0
13: else
14: last ← v
15: end if
16: end if
17: end for
18: end if
19: end for
20: U ←mappable-vertices(H,V )
21: if |U | = 0 then continue ← 0
22: end if
23: C[1..n]← 0
24: for u ∈ U in parallel do
25: v ← H[u]
26: if O[u] < O[v] then
27: if AtomicCAS(C[u], 0, v) = 0 then
28: if AtomicCAS(C[v], 0, u) = 0 then
29: m← AtomicIncr(nc)
30: M [u]← m
31: M [v]← m
32: else
33: C[u]← 0
34: end if
35: end if
36: end if
37: end for
38: end while
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Algorithm 4 shows an O(|E|)-time implementation to perform the leaf matchings, but
an O(|V |)-time implementation is possible. This alternative method is more complex to
implement, as it involves counting the leaves for each matched vertex (this only requires
examining up to 1 edge per leaf vertex), and writing them into an additional memory array.
The twins are a bit more complicated. We use a hash function to create digests of edge-lists
in Algorithm 5, so we can quickly determine twins. Algorithm 6 is similar to Algorithm 2
except the H vector denotes relatives, and there are of course no weights to examine. We
determine H by examining the edges of previously matched vertices. Entries of H are also
written concurrently by multiple execution units, but all the writes are valid relatives so we
do not need additional synchronization beyond an atomic write.

3.4. MIS-2. In our implementation of this coarsening method we have closely followed
the parallel algorithm provided in the Appendix of [2].

3.5. Constructing Coarse Graph From Mapping. Each of these four methods
produces a mapping vector from each fine vertex in V0 to a coarse vertex in V1. This
mapping defines an interpolation matrix I with |V0| rows and |V1| columns. Each index in
the mapping defines the row and the value defines the column of an entry in I, each with
weight 1. All other entries are 0. If we represent the fine edges E0 as an adjacency matrix,
we may form the coarse edges E1 as an adjacency matrix with Equation 3.2.

E1 = ITE0I (3.2)

With this we may perform the coarse graph construction as one call to a sparse matrix
transpose kernel and two calls to a sparse matrix-matrix multiplication kernel. However,
the structure of I leads to optimizations not possible when using a general-purpose sparse
matrix-matrix multiplication kernel. We propose Algorithm 7 as our alternative. There are
four distinct phases to Algorithm 7. In the first phase, it sums the number of entries in
each fine row that map to the same coarse row, and performs a prefix sum to calculate the
offsets for the start of each coarse row. In the second phase, the algorithm moves the fine
entries into the space designated for each coarse row, and also translates these fine entries
to coarse entries. In the third phase, the algorithm combines the weights of duplicate coarse
entries. In the fourth phase, the algorithm compresses the rows of the coarse matrix. For
the deduplication phase, there are two options to perform the deduplication: use a hashmap
within each row, or perform a sort within each row.

On CPU, the hashmap is the best option purely for complexity reasons. On GPU, the
algorithm must preallocate space for the hashmaps, and each must have enough storage
for the largest row in the matrix. This introduces difficulties for power-law graphs, as this
greatly limits the number of hashmaps that can be stored in memory. In turn this limits
the degree of parallelism possible. This can be remedied by using two tiers of hashmaps,
one which is viable for most rows, another which is viable for the few very large rows. As
memory is limited, the number of hashmaps that can be preallocated for either level is often
a trade-off for larger graphs. We can avoid this by processing the rows in multiple passes,
allowing us to use the full memory space for each tier of hashmaps. This also makes it
simpler to use an arbitrary number of tiers.

Another wrinkle on the GPU is the need for parallelism within each row to achieve
high device utilization, especially for power-law graphs. Unfortunately, the implementation
of hashmaps we used did not support concurrent insertion of duplicate values, so we could
not make use of parallelism within each row. We found experimentally that this problem
greatly limited the efficiency of our implementation.
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Algorithm 7 Parallel coarse graph construction.

Require: G(V,E,W ), n = |V |, m = |E|, M [1..n], nc.
Ensure: G(Vc, Ec,Wc).

1: C ′[1..nc]← 0, C[1..nc]← 0
2: for u← 1 to n in parallel do
3: for each v adjacent to u do
4: if M [u] 6= M [v] then
5: AtomicIncr(C ′[M [u]])
6: end if
7: end for
8: end for
9: for u← 1 to n in parallel do

10: for each v adjacent to u do
11: if M [u] 6= M [v] then
12: if (C ′[M [u]] < C ′[M [v]) or (C ′[M [u] = C ′[M [v] and u < v) then
13: AtomicIncr(C[M [u]])
14: end if
15: end if
16: end for
17: end for
18: R← ParPrefixSums(C)
19: m′ ← R[nc], C[1..nc]← 0
20: F [1..m′]← 0, X[1..m′]← 0
21: for u← 1 to n in parallel do
22: for each v adjacent to u do
23: if M [u] 6= M [v] then
24: if (C ′[M [u]] < C ′[M [u]) or (C ′[M [u] = C ′[M [v] and u < v) then
25: l← FindLoc(R,C, u)
26: F [l]←M [v], X[l]←W (u, v)
27: end if
28: end if
29: end for
30: end for
31: for u← 1 to nc in parallel do
32: F,X,C[u]← DedupWithWts(F,X,R,C, u)
33: end for
34: Ec,Wc,mc ← GraphConsWithTrans(F,X,R,C ′)

Sorting within each row is only feasible if the sort enables a high degree of parallelism
within the row. We chose bitonic sort as it is highly parallel, and found that this generally
outperformed our hashmap implementation on the GPU, but not on the CPU. We decided
to implement divergent paths in our implementation that utilize hashmaps on the CPU,
and utilize the bitonic sort on the GPU.

4. Refinement Methods. In this section we present the two partitioning methods
we will use to evaluate our coarsening methods.

4.1. FM Refinement. FM refinement [8] takes an initial partition on a graph and
refines with the goal of decreasing the cutsize and imbalance. It is a globally greedy algo-
rithm, which evaluates every vertex and selects the vertex which most decreases the cutsize.



M.S. Gilbert, K. Madduri, S. Acer, and S. Rajamanickam 45

In the case that no vertex decreases the cutsize, the algorithm chooses the vertex which
least increases the cutsize. In a single iteration, each vertex can only move once, and each
move is recorded, along with the cutsize and imbalance after the move. After all vertices are
moved, the algorithm rewinds to the point with the smallest cutsize. We present Algorithm
8 to illustrate this process more concretely. There are a variety of optimizations possible to
quickly determine which vertex should move, and to determine when the algorithm can stop
early. This algorithm has some potential for parallelism but the core greedy routine can’t
be parallelised unless global optimality is relaxed. The implementation of the FM algorithm
is not the focus of this paper so we leave parallelism here to future work. As this method of
refinement needs an initial partition, we use the Greedy Graph Growing Algorithm (GGGP)
[13] to create the partition on the coarsest graph. In the case that our coarse graph was
too big to use GGGP, we use spectral partitioning to generate a partition on the coarsest
graph.

4.2. Spectral Refinement. Spectral refinement does not produce a partition directly.
Instead, it utilizes the graph Laplacian L of the graph G, which is formed as follows:

L = D −A (4.1)

D is a diagonal matrix, and the diagonal entry of a row i is equal to the ith vertices’ degree.
A is the adjacency matrix of G. The eigenvectors are given as the solution to the following
for some constant λ:

Lx = λx (4.2)

We want to compute the Fiedler vector, the eigenvector corresponding to the second smallest
eigenvalue. Given an approximation xk of the Fiedler vector, we can use power iteration to
improve the approximation:

xk+1 =
Lxk
||Lxk||

(4.3)

This is a sparse-matrix vector multiplication, which may be implemented with fine-grained
parallelism. Power iteration ceases when the dot product of successive approximations is
sufficiently close to 1:

|xk+1 · xk − 1| < δ (4.4)

Multi-level methods are important for power iteration because Fiedler vectors of coarse
graphs may be projected to the finer graphs to obtain good approximations. This decreases
the number of iterations to converge. Given the Fiedler vector, we partition the rows by
the median-valued row of the vector. Each vertex in the graph is associated with a row, so
vertices with a value lower than the median go in one partition, and the rest go in the other
partition.
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Algorithm 8 FM Refinement

Require: G(V,E). Partition vector P0[1..n]. n = |V |.
Ensure: P1[1..n]

1: gainmax ← 0
2: cutsize← 0
3: balance← 0
4: Gains[1..n]← 0
5: (Loop over edges to find gains, current total cutsize, and current balance)
6: for u = 1 to n do
7: Eu ← E adjacent to u
8: Gains[u]← compute-gain(u,Eu, P0)
9: cutsize ← cutsize + compute-local-cut(u,Eu, P0)

10: if P0[u] = 0 then
11: balance ← balance + weight(u)
12: else
13: balance ← balance - weight(u)
14: end if
15: end for
16: (Compute maximum possible gain)
17: for u = 1 to n do
18: Eu ← E adjacent to u
19: sum ← sum-edge-weights(Eu)
20: if gainmax < sum then
21: gainmax ← sum
22: end if
23: end for
24: (One bucket array for each partition, each has 2*maximum gain total buckets)
25: B0, B1 ← allocate-buckets(2 ∗ gainmax)
26: for u = 1 to n do
27: if P0[u] == 0 then
28: bucket ← B0[Gains[u]]
29: else
30: bucket ← B1[Gains[u]]
31: end if
32: insert into bucket(bucket, u)
33: end for
34: swap sequence ← empty list
35: P1 ← P0

36: while B0 not empty AND B1 not empty do
37: if balance > 0 then
38: swap ← best-gain-in(B0)
39: else if balance < 0 then
40: swap ← best-gain-in(B1)
41: else
42: swap ← best-gain-in-either(B0, B1)
43: end if
44: (remove swap from datastructure, update cutsize and balance)
45: remove-and-perform-swap(P1, swap, cutsize, balance)
46: Eswap ← E0 adjacent to swap
47: update-adjacent-gains(Eswap, swap)
48: append-to-list(swap sequence,{swap,cutsize,balance})
49: end while
50: (Here we find the optimum cutsize and imbalance combination from the list. We then

undo all swaps after that point.)
51: select-best-and-undo-rest(swap sequence, P1)
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5. Results. To evaluate these methods we are using graphs from the SuiteSpare collec-
tion [6]. We have chosen to prioritize large graphs with more than 50 million non-zeros, and
we chose about 50 graphs of this size that could fit in our GPU memory (11GB NVIDIA
RTX 2080 Ti). We ran our Kokkos GPU implementation of each method ten times on
each graph, and compare the median timing and cutsize results. For certain combinations
of graphs and methods the program either ran out of GPU memory or took longer than
our time limit. In these cases we do not include the results from other methods that com-
pleted on the graph. We present performance profile graphs as they are the best method to
visualize this quantity of results.

(a) Total Coarsening Time (b) Aggregation Mapping Time

(c) Coarse Graph Construction Time (d) Total Number of Coarse Levels (hard to see:
match runs along x-axis)

Fig. 5.1: Performance Profiles for Generating Full Coarse Graph Hierarchy

5.1. Coarsening Time Breakdown. In Figures 5.1(a), 5.1(b), 5.1(c), and 5.1(d) we
compare each coarsening heuristic on our test graphs. Where applicable, timing information
is across the entire hierarchy of coarse graphs. In Figure 5.1(a) we note that HEC is capable
of producing the entire coarse graph hierarchy more quickly than the other methods most
of the time. Following HEC are MT-Metis and MIS-2 in a tie for second, with HEM in
fourth. HEC’s success here is due to its aggressiveness, combined with the simplicity of its
implementation. MIS-2 is even more aggressive, but as we will note for 5.1(b), its imple-
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mentation is not as efficient. MT-Metis and HEM are both far less aggressive, but HEM is
prone to stalling so it often has a much deeper hierarchy than any other method.

In Figure 5.1(b) we can see HEC’s primary strength, the efficiency of computing the aggre-
gate mapping. HEC and HEM should take approximately the same amount of time on a
per level basis since their implementations are very similar (compare Algorithms 1 and 2),
but as HEC has far fewer levels (see 5.1(d)), it is much faster than HEM. MT-Metis also
benefits from having fewer levels than matching. Although MIS-2 has the shallowest hier-
archy overall, the time to compute an aggregate for a single level is the longest of all methods.

Looking at Figures 5.1(c) and 5.1(d) we can see that the coarse graph construction time
appears to favor the methods with shallower hierarchies.

(a) FM Refinement Time (includes finding initial
partition + partition projection)

(b) FM Bi-partition Cutsize

Fig. 5.2: FM Refinement Performance Profiles

5.2. FM Refinement Breakdown. In Figures 5.2(a) and 5.2(b) we show refinement
times and cutsize results using FM refinement for each of the four coarsening heuristics on
our test graphs. The refinement times in Figure 5.2(a) shows a clear trend favoring fewer
coarse levels as in Figure 5.1(d). Figure 5.2(b) shows that HEC seems to come out far ahead
of the other methods, followed by MT-Metis, then HEM, then MIS-2. We suspect that the
weaker performance of MIS-2 is due to it ignoring edge weights, and therefore a substantial
amount of structural information.

5.3. Spectral Refinement Breakdown. Figures 5.3(a) and 5.3(b) show the refine-
ment time and cutsize results using spectral partitioning for each of the four coarsening
heuristics on our test graphs. The trends in spectral refinement cutsize in Figure 5.3(b)
closely mirror those in FM refinement cutsize, with HEC leading the pack. However, we
see that MIS-2 pulls ahead of MT-Metis and HEM. The timing trends in Figure 5.3(a)
show greater stratification between the best method and the rest of the methods. This is
likely due to the eigenvector convergence rate, which is strongly correlated to the quality of
coarsenings.

5.4. FM vs Spectral. In our results we additionally looked at the cutsize performance
of FM refinement versus spectral refinement. In Figure 5.4 we compare the best cutsize
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(a) Spectral Refinement Time (includes finding ini-
tial eigenvector guess + eigenvector projection)

(b) Spectral Bi-partition Cutsize

Fig. 5.3: FM Refinement Performance Profiles

Fig. 5.4: Best Method’s Fiduccia-Mattheyses Refinement Bipartitioning Cutsize Vs Best
Method’s Spectral Bipartitioning Cutsize

achieved by any of the four coarsening methods using FM refinement to the best cutsize
achieved by any of the four coarsening methods using spectral refinement. This comparison
demonstrates that FM vastly outperforms spectral refinement, on every graph we tested.
Furthermore, spectral had 50% larger cutsizes on more than 40% of all graphs. This inspired
us to look at the best coarsening method on this subset of graphs where spectral refinement
produced 50% worse cutsizes than FM refinement. Comparing 5.5 to 5.2(b), we look at
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Fig. 5.5: FM cutsize on subset of graphs where best spectral cut at least 50% larger than
best FM cut

when each method was within 50% of the best bi-partitioning cutsize in Table 5.1. In this
table we can see that each method’s fraction of graphs decreased, except for HEC. This
result indicates HEC’s superiority on this subset of graphs, showing that FM refinement is
best paired with HEC coarsening.

Method All Graphs FM Optimal Subset
HEC 100 100
MT 92 79
MIS 92 79

Match 90 79

Table 5.1: Percent of Graphs where method was within 50% of best

5.5. Parallel Implementation Scaling Results. In this section we demonstrate
scaling results on CPU on a subset of our test graphs, using a 32-core AMD Ryzen Thread-
ripper 3970x with 256GB of RAM. Each datapoint is collected from a single test run, as we
observed very little variance in runtimes. An ideal scaling result would show speedup equal
to the thread count. In Figures 5.6(a), 5.7(b), 5.7(a), and 5.6(b) we specifically focus on
the aggregation methods, which excludes the time spent constructing coarse graphs.

In Figure 5.6(a) we see that our HEC implementation gains the largest speedup going
from 8 to 16 threads, with the second largest speedup going from 16 to 32 threads. Overall
however, the final speedup at 32 threads is approximately around 3-4x. In Figure 5.6(b)
the MIS-2 speedup trend seems to be more regular across each jump in thread count. Ad-
ditionally, the speedup at 32 threads has a rather large range, and almost all graphs receive
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(a) HEC Aggregation Mapping Speedup over 1
Thread

(b) MIS-2 Aggregation Mapping Speedup over 1
Thread

Fig. 5.6: FM Refinement Performance Profiles

(a) HEM Aggregation Mapping Speedup over 1
Thread

(b) MT Aggregation Mapping Speedup over 1
Thread

Fig. 5.7: Aggregation CPU Scaling

a larger total speedup with MIS-2 than HEC. In Figure 5.7(a) we see that HEM has a
strong speedup going from 8 to 16 threads, just as with HEC. However, the final speedup
for each graph is consistently with HEM than HEC, but slightly less than MIS-2. Since the
algorithms to compute the HEC aggregation and HEM aggregation (Algorithms 1 and 2
respectively) are structurally quite similar, we should expect similar trends between HEC
and HEM. After some analysis of our implementation, we discovered that we had an atomic
counter in both the HEC and HEM implementations. It was the dominant operation in the
second loop of algorithm 1, but was surrounded by other expensive operations in the second
loop of Algorithm 2. The synchronization time on this atomic became dominant on the
HEC implementation but did not in the HEM implementation. Comparing Figures 5.7(b)
to 5.7(a), we note that the MT-Metis and HEM aggregation show very similar speedup
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trends. We expect this as HEM is a component of the MT-Metis aggregation scheme, and
in cases where the HEM algorithm matches 75% of all vertices, the MT-Metis aggregation
scheme does no further aggregation.

Out of all methods, HEC has the weakest scaling. We implemented a fix that improved
scaling for our CPU testing, but slightly decreased the GPU performance, so we left it as
is. Interestingly, three of the four schemes (excluding MIS-2) showed their strongest scaling
result going from 8 to 16 threads.

5.6. CPU vs GPU Coarsening Performance. In this section we take a brief look
at real timing numbers from the CPU and GPU. We focus on the performance of the HEC
coarsening heuristic, as the CPU vs GPU comparison is roughly the same for the other
methods. In Figure 5.8 we show the performance of our HEC GPU implementation on a

Fig. 5.8: CPU vs GPU Complete Hierarchy Coarsening Time Comparison

small number of graphs. The coarsening performance on GPU compared to CPU shows
that our GPU implementation is frequently faster than the CPU, except for a few graphs.
Clearly, in Figure 5.9 there is no instance in which the GPU is slower than the CPU, so
the cases of slowdown on the GPU are occurring within the construction phase. In further
analysis of Hollywood-2009 and Indochina-2004 we found that the max degree of the coarse
rows before deduplication was over 1, 000, 000 and 200, 000 respectively. We investigated a
solution for this problem to reduce this skew, which does not appear in these results. In
future work we evaluate this solution, and we find that it is successful in eliminating this
slowdown for GPUs. As the GPU uses bitonic sort for deduplication, which has suboptimal
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Fig. 5.9: CPU vs GPU Complete Hierarchy Aggregation Time Comparison

time-complexity, this large degree could be the cause for the lack of GPU scaling on these
two graphs. We found that HV15R produced a max degree of around 24, 000 in the coarse
rows before deduplication, which does not fully explain the lack of scaling here.

6. Conclusions. Considering HEC’s dominant performance in terms of cut quality,
and very strong performance in terms of time to generate a coarse graph heirarchy on a
GPU as well as the time to compute a partition on that heirarchy, HEC is the best choice of
coarsening algorithm among those we evaluated. Conversely, HEM should be avoided unless
it is known that the graph structure does not exhibit a high risk of stalling. The MT-Metis
optimizations and MIS-2 coarsenings are both good options that excel on certain graphs.

In further research, we hope to demonstrate some methods that can reduce the load im-
balance of coarse vertex deduplication. We also want to investigate fine-grained parallelism
in the refinement stage, specifically parallel analogues to FM refinement. As evidenced in
Figure 5.4, FM refinement is a crucial component for a high-quality multi-level partitioner,
particularly on irregular graphs. An end-to-end GPU multilevel partitioner that utilizes
FM refinement or a relaxation thereof is desirable for this reason. Without this, end-to-
end GPU partitioners are restricted to spectral methods. Finally, given the speed of these
coarsening methods (particularly HEC), we want to investigate extensions to these methods,
particularly using an initial partition of a graph to improve the coarsening quality.
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Appendix A. Graph Listings. See Table A.1 for graphs used in Figures 5.1(a),
5.1(b), 5.1(c), 5.2(a), 5.2(b), and 5.4. See Table A.2 for graphs used in Figures 5.1(d),
5.3(a), and 5.3(b). See Table A.3 for graphs used in Figure 5.5 and Table 5.1.

kron g500-logn20 ML Geer
HV15R bcsstk25
wb-edu rgg n 2 24 s0
cage15 nlpkkt120
soc-LiveJournal1 Cube Coup dt6
hugebubbles-00020 Geo 1438
rgg n 2 22 s0 stokes
Cube Coup dt0 Queen 4147
Hook 1498 hugebubbles-00000
com-Orkut ljournal-2008
Long Coup dt0 Long Coup dt6
circuit5M audikw 1
mycielskian18 kmer V2a
af shell10 channel-500x100x100-b050
Bump 2911 vas stokes 2M
kmer U1a vas stokes 4M
road usa hugebubbles-00010
rgg n 2 23 s0 nlpkkt160
fe rotor indochina-2004
europe osm delaunay n24
hollywood-2009 Flan 1565
mawi 201512020030 com-LiveJournal
dielFilterV3real kron g500-logn21
Serena delaunay n23
mawi 201512020000 uk-2002
GAP-road mycielskian17
nlpkkt200

Table A.1: Graphs used for FM refinement partitioning experiments
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kron g500-logn20 Serena
vas stokes 2M HV15R
nlpkkt160 uk-2002
fe rotor delaunay n24
hollywood-2009 Bump 2911
ljournal-2008 delaunay n23
Long Coup dt0 com-LiveJournal
stokes kron g500-logn21
audikw 1 hugebubbles-00000
af shell10 kmer U1a
road usa rgg n 2 22 s0
kmer V2a europe osm
circuit5M wb-edu
mycielskian17 bcsstk25
soc-LiveJournal1 mawi 201512020000
com-Orkut GAP-road
rgg n 2 23 s0 Long Coup dt6
nlpkkt200 Geo 1438
cage15 Cube Coup dt6
vas stokes 4M indochina-2004
nlpkkt120 Queen 4147
mycielskian18 hugebubbles-00020
mawi 201512020030 hugebubbles-00010
rgg n 2 24 s0 channel-500x100x100-b050
dielFilterV3real Cube Coup dt0
Flan 1565 ML Geer
Hook 1498 mawi 201512020130

Table A.2: Graphs used for spectral partitioning experiments

kron g500-logn20 rgg n 2 24 s0
cage15 soc-LiveJournal1
rgg n 2 22 s0 ljournal-2008
kmer V2a kmer U1a
road usa rgg n 2 23 s0
europe osm hollywood-2009
com-LiveJournal GAP-road

Table A.3: Graphs for which FM refinement partitioning produced substantially better
cutsizes than spectral partitioning
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RADIAL BASIS FUNCTIONS IN THE TANGENT PLANE: MESHFREE
APPROXIMATION METHODS FOR MANIFOLDS

ANDREW M. JONES∗ AND PETER A. BOSLER†

Abstract. This work examines the use of Radial Basis Function (RBF) methods for interpolation and
construction of surface differential operators for the unit sphere. We present convergence results for the
approximation of the Laplace-Beltrami operator and interpolation of a spherical harmonic. Additionally,
we do a comparative analysis of the Generalized Moving Least Squares (GMLS) package Compadre on
two different node sets on the unit sphere, equiangular cube sphere and icosahedral nodes. Algorithmic
performance analysis is also provided to estimate the cost of using RBF methods.

1. Introduction. Interpolation and approximation of derivatives on surfaces is an
important problem that arises in many areas of science and engineering. For example, a
challenging problem in atmospheric sciences is the simulation of the shallow wave equations
on a rotating sphere [5], which requires both interpolation and approximation of surface
differential operators such as the Laplace-Beltrami operator. In this work, we examine the
use of RBFs for this task.

RBFs were originally developed in the 1970s for scattered data interpolation problems
arising in cartography [7]. Since then they have been extended to many other applications
including solving PDES [11, 9, 3, 5]. In this area, RBFs are used for approximating spatial
derivatives, for which they can achieve high orders of accuracy. Relevant to this paper we
utilize RBFs for approximating surface differential operators. Several studies have shown
that this approach works well for problems in atmospheric sciences, such as the shallow water
wave equations [3, 5], and in problems in biology, such as pattern forming reaction-diffusion
equations [9, 11] . The focus of this study is surface interpolation and approximation of the
surface Laplacian of functions on the sphere using the recently developed method called the
RBF tangent plane method (RBF-TPM) [12]. The second focus is on the comparisons of
RBF-TPM with GMLS [10].

The remainder of the paper can be outlined as follows: In Section 2, we briefly introduce
RBFs, describe how they are used in finite difference-type mode, and then describe the
tangent plane method (TPM). We then introduce our new software package, RbfKokkos,
that uses the Kokkos programming model and its associated libraries to implement RBF-FD.
Finishing the work, we present convergence results for RbfKokkos vs. the GMLS package
Compadre [8], and a performance analysis of the RBF and GMLS algorithms.

2. Methods.

2.1. RBF Interpolation. The RBF interpolation process is illustrated in Figure 2.1.
This Figure shows a reconstruction of data collected at scattered nodes using Gaussian
RBFs. Starting with scattered data, the RBF method produces an interpolant of this data
using shifts and rotations of single radial kernel. Gaussians are centered at each of data
sites.

A radial kernel Φ(x,xj) := φ(||x−xj ||) is defined by the || · || standard Euclidean norm
between distinct point sets, X = {xk}Nk=1 ⊂ Ω in Rd. For RBF interpolation methods one
computes distances between a central node xj and x the evaluation sites for N nodes in Ω.

∗Boise State University, andrewjones237@u.boisestate.edu
†Sandia National Laboratories, pabosle@sandia.gov
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Fig. 2.1: RBF interpolation of 2D scattered node data from [4]. Each subfigure is as follows
(a) scattered data (b) radial basis functions (Gaussians), and (c) interpolant of or surface
reconstruction (a) .

The basic RBF expansion takes the form,

s(x) =

N∑

j=1

cjφ(||x− xj ||). (2.1)

The first step of a interpolation problem is finding the coefficients of said expansion, which
is found by solving the following system,

N∑

j=1

cjφ(||xi − xj ||) = f(xi) , i = 1, . . . , N, (2.2)

where we have restricted the interpolant to the function at our data sites or input data by
s|X = f |X . This linear system can be written as follows:

Ac = f ,

where the symmetric matrix A is the global RBF interpolation matrix, c is a vector contain-
ing the expansion coefficients, and f is the samples of the target function to be interpolated.
The matrix elements are,



φ(||x1 − x1||) . . . φ(||x1 − xN ||)

...
. . .

...
φ(xN − x1||) . . . φ(xN − xN ||)






c1
...
cN


 =



f1

...
fN


 . (2.3)

Some commonly used RBFs are shown in Table 2.1.

Type of RBF RBF φ(r)
Polyharmonic Spline (PHS) r2` log(r), ` ∈ Z+ > 0
Polyharmonic Spline (PHS) r2`+1, ` ∈ Z+ ≥ 0

Multiquadric(MQ)
√

1 + (εr)2

Gaussian(GA) e−(εr)2

Sech(SH) sech(εr)

Table 2.1: Commonly used radial basis functions (RBFs).
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In this study we use the polyharmonic splines (PHS) which are advantageous because
they don’t require shape parameters (ε) like the Gaussian and Multiquadric RBFs. Choosing
good shape parameters often requires expensive optimization algorithms [2], and the inter-
polation matrix can become extremely ill-conditioned, prompting the use so called stable
algorithms [5].

When using PHS, one often appends on low degree polynomials to Eq. (2.1), to guar-
antee well-posedness of the interpolation problem, but more importantly this has the added
benefit of improving approximation convergence rates and allows for polynomial reproduc-
tion [5]. The new form of the interpolant is as follows:

s(x) =

N∑

j=1

cjφ(||x− xj ||) +

L∑

k=1

γkpk(x). (2.4)

The respective terms in the new expansion Eq. (2.4) are: L the dimension of the polynomial
space of degree ` and {pk} which is a polynomial basis for this space. To account for the
new L coefficients, γk, the interpolant is subject to the following moment conditions [11]:

N∑

k=1

ckpj(xk) = 0, j = 1, 2, . . . , L.

The linear system for determining the expansion coefficients is given as follows:

[
A P
PT O

] [
c
γ

]
=

[
f
0

]
, (2.5)

where the block P has entries Pjk = pk(xj) For example, the elements of the block matrix-
vector system are follows for ` = 1,




Φ(x1,x1) · · · Φ(x1,xN ) 1
...

. . .
...

...
Φ(xN ,x1) · · · Φ(xN ,xN ) 1

1 · · · 1 0







c1
...
cN
γ1


 =




f1

...
fN
0


 . (2.6)

One issue with the global interpolation methods presented above is the linear systems 2.3
or 2.5 are dense and not well suited for iterative methods. Direct methods require O(N3)
computational cost, which becomes prohibitive for large N . In the next section we examine
using the more computationally efficient local RBF interpolants, and their extension to
finding finite difference (FD) weights.

2.2. RBF-FD Direct Method. Local interpolation methods maintain high accuracy,
while avoiding constructing and solving of ill-conditioned dense linear systems. The aim of
this local method as illustrated in Figure 2.2, is to compute weights for interpolation or
approximating derivatives at a target point xc using stencils consisting of its n nearest
neighbors at xc.
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Fig. 2.2: Local interpolation stencil. Nearest neighbors (blue) for a point xc at a central
node (yellow) on a sphere (red).

To determine these weights we use RBFs rather than the traditional choice at polynomials.
For a equally spaced grids, the RBF method can be shown to reproduce standard FD
stencil weights, however for the RBF-FD method we can maintain high order accuracy on
non-uniform meshes or point sets [5, 11, 9].

The RBF-FD weights wj for the linear differential operator L are given as a solution to
the following system,

n∑

j=1

wjφ(||xj − xi||) = Lφ(||x− xi||)|x=xc , i = 1, . . . , n, (2.7)

where xc is the stencil’s center under the constraint that weights ω be exactly the finite
difference weights for the polynomials of order L for pk(x),

n∑

j=1

wkpk(xj) = Lpk(x)|x=xc k = 1, . . . , L,

where {pk} are a basis for the set of polynomials of degree `. As described in detail by [5,
pp. 111-112], the weights satisfying Eq. (2.7) under the constraint, can be computed by
solving the following linear system,

[
A P
PT 0

] [
w
ω

]
=

[
Lφ(||x− xj ||)|x=xc

LP (x)|x=xc

]
. (2.8)

We compute RBF-FD weights according to Eq. (2.8) for each of the N nodes xj in X.
These weights can then be combined into RBF-FD differentiation matrices.

2.3. Tangent Plane Method (TPM) for the Sphere. Surface differential opera-
tors for simple geometries (e.g. sphere, torus, ellipsoid, etc.) can be derived explicitly. For
more complex geometries these differential operators cannot be easily derived (e.g. bumpy
sphere, tooth, frog, Stanford Bunny). Because always a parametric or implicit representa-
tions for the S. In this section we explore a simple yet novel method for approximating the
Laplace-Beltrami operator ∆S on simply connected, closed surfaces that does not require
parametric representations.

The Tangent Plane Method (TPM) is first introduced in [1] allows for simple approx-
imation of ∆S [1] by projecting the stencil points into the local tangent plane about the
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target node xc, as shown by Figure 2.3. After projecting the points, one can just use the
standard Laplacian in the plane to approximate ∆S at the target xc. To make this proce-
dure easier, we can rotate the projected stencil points to be parallel to the z plane, and just
carryout the approximations using the standard Laplacian in R2. This procedure is carried

Fig. 2.3: Projection of stencil along stencil centered plane.

out using the projected W = I − n̂n̂T , and n̂ is the unit normal vector of the surface S at
xc, and rotation matrix Q,

Q =
[
t̂1 t̂2 n̂

]
,

where t̂1 and t̂2 are orthogonal unit tangent vectors spanning the plane orthogonal to n̂.
The projected and rotated points are as follows:

ξj = QTWxj .

The rotation matrix Q can be found by computing the SVD or any orthogonal matrix
decomposition (e.g. QR) of W . When dealing with a surface that has no explicit or implicit
parameterization using an orthogonal matrix decomposition is necessary, but for the sphere
one could simply compute the meridional and equatorial vectors for a stencil to find the
first two columns of Q. The algorithms for implementing the tangent plane interpolation
and generation of Laplace-Beltrami weights are shown in the Appendix A.

2.4. Software Design. The RbfKokkos software package uses C++ header based
programming style and utilizes the Kokkos library from Sandia National Laboratories for
its data structures and parallel efficiency. For the construction and search of the nearest
neighbors the open source KDTree package NanoFlann is available also utilization of another
open source KDTree package [6]. Currently the code runs the Kokkos based algorithms in
serial, and is being adapted to the backend parallelism with Kokkos using OpenMP.

3. Results and Algorithmic Performance.

3.1. Problem Statement. We test the accuracy of the RBF methods for interpolation
of the spherical harmonic Y 4

5 which is shown by Figure 3.1,
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Fig. 3.1: Y 4
5 spherical harmonic on N = 9128 cubed sphere nodes.

and we examine the Laplace Beltrami operator applied to a spherical harmonic, which is
defined as follows,

∆SY
m
l = −l(l + 1)Y ml . (3.1)

3.2. Convergence Results. The convergence tests are done on icosahedral and equian-
gular cubed sphere node sets. For the GMLS and RBF software packages, we use for node
sets up to N > 106 and N > 105 for the surface Laplacian and the interpolation problems.
Figures [3.2,3.3], display the convergence results for the interpolation and Laplacian using
the `∞ norm.

Fig. 3.2: Convergence results for interpolation (left) and LSY ml (right) of spherical harmonic
on icosahedral nodes. The figures display the decreasing relative `∞ error as the number of
nodes N increase.
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Fig. 3.3: Convergence results for interpolation (left) and LSY ml (right) of spherical harmonic
on equiangular cubed sphere nodes. The figures display the decreasing relative `∞ error as
increasing number of nodes N .

Which is defined as follows,

rel. `∞ error =
max
i
|(uapprox.i − uexacti )|

max
i
|uexacti | , (3.2)

where the exact and the approximate of the solution are, uexact and uapprox., respectively.

3.3. Algorithmic Performance. The results in Section 3.2, demonstrate that the
RBF methods in RbfKokkos can achieve lower error than the GMLS methods in Compadre.
However, we also need to determine which method is more computationally expensive in
terms of weight generation and evaluation cost. In this section we examine computational
cost of each method. The stencil sizes (nrbf , ngmls) of both methods determine the cost,
which for both depends of the dimension of the basis L,

L =
(`+ 1)(`+ 2)

2
, (3.3)

where the basis are bivariate polynomials of degree `. RbfKokkos and Compadre both rely
on the degree of basis `, but each computes the neighbors differently. RbfKokkos selects the
number of nearest neighbors as follows,

nrbf = floor(αL),
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for this work we select α = 3.5, and the nrbf nearest neighbors are found using a KNN
search. For Compadre’s GMLS method a radius search for finding the nearest neighbors.
We define the stencil S0 mesh width to be,

h = max
xi∈S0

|xi − xc|, i = 1, . . . , L,

where xc is the stencil center. The search radius is h, scaled by a user-chosen parameter
τ > 1. Shown here,

τ =

{
2 , ` ≤ 4,
3 , ` > 4.

Then ngmls is the number of points in the set xi ∈ X : |xi − xc| < τh

According to Eq. (2.5) the RBF system is (nrbf +L)× (nrbf +L), which is solved takes
O((nrbf + L)3) operations via a Householder QR algorithm. For GMLS one must solve a
Least Squares problem, which takes O(ngmlsL

2) and also uses a Householder QR algorithm.
The weight generation stage for both methods can be carried out before simulation time, so
the per time step cost for a simple time dependent PDE of the form,

du

dt
= LSu, (3.4)

using an explicit time-stepping scheme requires O(sN) operations, where s is the bandwidth
of LS . We can make the assumption that s = n for each of the respective methods, since
we can compute the inner product of the target function and the weights so our evaluation
cost for GMLS or RBF methods is O(nN). The cost for weight generation and evaluation
stages are shown by Table 3.1 and Table 3.2.

RBF Algorithm Comput. Cost (RBF)
RBF Interp. Weight Gen. O(Neval(nrbf + L)3)
RBF-FD Weight Gen. O(N(nrbf + L)3)
RBF Interp. Eval. O(nrbfNeval)
RBF-FD Eval. O(nrbfN)

Table 3.1: Cost of RBF Algorithms [1,2] for interpolation and FD weight generation, and
the cost of evaluating interpolant and the approximation of the surface Laplacian.

GMLS Algorithm Comput. Cost (GMLS)
GMLS Interp. Weight Gen. O(NevalngmlsL

2)
GMLS FD Weight Gen. O(NngmlsL

2)
GMLS Interp. Eval. O(ngmlsNeval)
GMLS FD Eval. O(ngmlsN)

Table 3.2: Cost of GMLS algorithms for interpolation and FD weight generation, and the
cost of evaluating interpolant and the approximation of the surface Laplacian.
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Fig. 3.4: RBF and GMLS algorithms computational cost vs. relative error (Left), and
computational cost per timestep for O(nN) vs the relative error (Right). Both plots use
convergence results from the cubed sphere node tests.

The evaluation step is cheaper when using RBFs since Compadre’s GMLS methods uses
larger stencils. The GMLS average stencil sizes are defined by,

ngmlsavg =
nmax + nmin

2
,

these are shown by Table 3.3.

N ngmls, ` = 2 ngmls, ` = 3 ngmls, ` = 4
1178 55 92 134
7778 52 93 136
20186 52 90 131
38402 52 90 131
62426 52 90 129
92258 52 87 130

Table 3.3: The average stencil sizes for GMLS with increasing polynomial degree ` = 2, 3, 4
and increasing problem sizes N .

4. Conclusions. For this work we set out to accomplish the following goals:
• Evaluate the interpolant and surface Laplacian of the function Y 4

5 (x) using RBF
methods on icosahedral and cubed sphere nodes.
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• Achieve lower relative `∞ error than GMLS with at least an order of magnitude
less nodes. This is shown by Figs. 3.2,3.3.

• Compare the algorithmic costs of RBF methods vs. GMLS. In our initial tests
the stencils satisfy nrbf < ngmls, which implies the lower cost. However, more
investigation is necessary to determine how generally this result may be applied.

The future goals of this work are to include RbfKokkos in the Compadre [8] software package,
and apply its methods to various multiphysics applications.
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Appendix A. Algorithms. Algorithms 1 and 2 summarize the steps to compute RBF
interpolant and RBF-FD weights, respectively, using the Tangent Plane Method (TPM).

Algorithm 1 Method for Computing RBF Interpolant using Tangent Plane Method
(TPM).

1: Select point-list XD, XE in dimension d and number of points N
2: Initialize spline/polynomial degree (`), min-stencil-size (nmin)
3: Scale nmin by a constant α ≥ 1
4: Set stencil-size n = αnmin
5: Build KDTree from point-list XD

6: for points xei in point-list XE do
7: Set stencil center xec sequentially from point-list XE

8: Find neighbor-list of length stencil-size for xec using KDTree of XD

9: Set stencil point-list Xn using neighbor-list
10: Set stencil for input function or data fn using neighbor-list
11: Compute QR via Householder reflections on W = I − nnT
12: Project and rotate Xn using R
13: Construct degree ` RBF distance matrix A and bivariate polynomial matrix P ;

Construct saddle point matrix A using previous line
14: Compute φ|x=xec

andp|x=xec

15: Construct right hand side of saddle point system f using previous line
16: Solve Aw = f to find weights wT for stencil centered at xc
17: Compute interpolant sk at xec by w · fn
18: end for

Algorithm 2 Method for Computing RBF-FD Weights using Tangent Plane Method
(TPM).

1: Select point-list X in dimension d and number of points N
2: Initialize spline/polynomial degree (`), min-stencil-size (nmin)
3: Scale nmin by a constant α ≥ 1
4: Set stencil-size n = αnmin
5: Build KDTree from point-list X
6: for points xi in point-list X do
7: Set stencil center xc sequentially from point-list X
8: Find neighbor-list of length stencil-size for xc using KDTree
9: Set stencil point-list Xn using neighbor-list

10: Compute QR via Householder reflections of W = I − nnT
11: Project and rotate Xn using R
12: Construct degree ` RBF distance matrix A and bivariate polynomial matrix P ;
13: Construct saddle point matrix A using previous line
14: Compute Lφ|x=xc and Lp|x=xc

15: Construct right hand side of saddle point system f using previous line
16: Solve Aw = f to find weights wT for stencil centered at xc
17: end for
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HYBRID MULTILEVEL MONTE CARLO – POLYNOMIAL CHAOS
METHOD FOR GLOBAL SENSITIVITY ANALYSIS

MICHAEL MERRITT∗, GIANLUCA GERACI† , MIKE ELDRED‡ , AND TERESA PORTONE§

Abstract. Uncertainty Quantification for high-fidelity and high-dimensional computational applica-
tions can be prohibitively expensive, heightening the need to efficiently characterize, propagate, and rank
the uncertain parameters. Multilevel Monte Carlo (MLMC) sampling approaches provide an efficient strat-
egy for handling the uncertainty propagation of expensive applications. On the other end, Polynomial Chaos
expansions (PCE) have been routinely used for Global Sensitivity Analysis (GSA) in cases of moderately
large dimensionality and whenever the underlying function is smooth. In this work, we propose a hybrid
MLMC-PCE method with a focus on GSA. In particular, the use of a MLMC sampling strategy for the
computation of the PCE coefficients is expected to extend the applicability of the PCE-based GSA analysis
to expensive high-dimensional problems. In order to efficiently couple these two strategies, the MLMC sam-
ple allocation problem is formulated to target PCE-derived metrics for GSA, namely the estimator variance
for each term of the Sobol’ variance decomposition. The idea presented in this manuscript is demonstrated
by means of a simple numerical experiment based on an analytical problem for which the estimated Sobol’
indices obtained via the novel MLMC-PCE approach are compared to their single fidelity counterparts and
the reference solutions.

1. Introduction. Researchers in computational science continue to expand the state
of the art in high-fidelity modeling and simulation, including complex multiphysics and
multiscale simulations. For uncertainty quantification (UQ), this often leads to the dual
challenge of high computational expense and high random dimensionality, as driven by this
increasing model complexity. The most important contributors within this large set of un-
certain parameters to the output of said models is often poorly understood. In this context,
there are a variety of UQ techniques that allow one to understand how uncertainties propa-
gate through the often many layers of these high-fidelity models. Global sensitivity analysis
(GSA) aims to accomplish this goal by quantifying the relative contribution of uncertain
parameters to uncertainty in the output of a mathematical model [11]. We focus, in par-
ticular, on the estimation of Sobol’ indices, a variance-based GSA measure named for the
work of Ilya Sobol’ [13]. Techniques for computing GSA measures rely on high-dimensional
integration methods, such as Monte Carlo sampling. These Monte Carlo methods are simple
to implement and their asymptotic convergence properties are independent of the dimen-
sionality of the problem. The drawback of MC methods is that their convergence remains
slow, requiring a large number of evaluations of the quantity of interest (QoI) [10, 13].

When faced with a model that is computationally expensive to simulate, it is often ad-
vantageous to consider a hierarchy of related models with differing levels of fidelity and asso-
ciated computational cost. This approach has become popular, specifically through the use
of multilevel Monte Carlo (MLMC) [4], which aims to accelerate Monte Carlo convergence
to an acceptable error in the statistics by leveraging a hierarchy of models parameterized
by a single variable, e.g. spatial or temporal resolution. These ML models are often found
in the context of using a hierarchy of mesh refinement levels when solving a differential
equation [1], although they encompass a broader class of models, such as financial models
and risk management, biochemical reaction networks, and engineering problems [4]. The
concept of multiple model fidelities has been generalized to more heterogeneous model hi-
erarchies, giving rise to the notion of multifidelity UQ methods such as multifidelity Monte
Carlo (MFMC) and generalized control variate methods [8, 5].

∗Department of Mathematics, North Carolina State University, mbmerrit@ncsu.edu
†Sandia National Laboratories, ggeraci@sandia.gov
‡Sandia National Laboratories, mseldre@sandia.gov
§Sandia National Laboratories, tporton@sandia.gov
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The focus of this study is the application of MLMC methods to better estimate variance-
based GSA measures via Polynomial Chaos expansions (PCE). Previous efforts to accelerate
the computation of Sobol’ indices using a hierarchy of models [9, 7], while successful in
reducing the computational cost below that of standard single-fidelity MC, still require a
separate MC estimator for each term of the Sobol’ variance decomposition, causing their cost
to scale with parameter dimension. This would limit their utility in large-scale applications
with many parameters. It is also worth noting that these strategies do not provide the
opportunity to reuse samples between each MC estimator and therefore their computational
cost, measured as number of model evaluations, necessarily increases with the number of
dimensions.

The hybrid method proposed in this work is intended to fill the gap between the effi-
ciency of PCE-based GSA decomposition, which naturally allows one to link each Sobol’
variance decomposition term directly to the relevant PCE coefficients, with the provable
advantages of MLMC for numerical integration in high-dimensional spaces. In this case,
although the number of coefficients is still expected to increase with problem dimension,
the model evaluations required to estimate each PCE coefficient can be shared and the only
difference among the coefficient evaluations is introduced by the polynomial basis used for
each coefficient integral, and these bases are known a priori.

The remainder of this document is organized as follows: the background for an efficient
GSA analysis is presented in Section 2, including necessary details on PCE in Section 2.1 and
on sampling approaches in Section 2.2. The derivation of the estimators needed to properly
formulate the MLMC sample optimization problem are presented in Section 3. Numerical
results for a simple analytical test problem are highlighted in Section 4 where MLMC and
MC results are compared to high-resolution solutions for the Sobol’ variance decomposition
terms. Concluding remarks end the manuscript in Section 5.

2. Global Sensitivity Analysis background. There are a variety of approaches
used to determine the sensitivity of a model to uncertain parameters, including local and
global sensitivity methods, as well as others [12]. In this manuscript we focus on global
sensitivity analysis. Global sensitivity analysis aims to describe the sensitivity of a model
over the parameter domain, as opposed to at a single point. The primary variance-based
GSA measure, the Sobol’ index, quantifies the relative contribution of a subset of uncertain
parameters to the output variance of a model. Given a model Q(ξ) : Ξ → Q ⊆ R and a set
of uncertain parameters, ξ = (ξ1, . . . , ξd) ∈ Ξ ⊂ Rd, the first step of a Sobol’ GSA analysis
is the so-called ANalysis Of VAriance (ANOVA) decomposition [13] which decomposes the
variance Var [Q] in a sum of conditional contributions

Var [Q] =
∑

u⊆{1,2,...,d}
u 6=0

Su, (2.1)

where each conditional variance Su is defined as

Su =

∫
Q2
u(ξu)dξu (2.2)

and the term Qu is obtained as

Qu(ξu) =

∫
Q(ξ∼u)p(ξ∼u)dξ∼u −

∑

v⊂u
v 6=u

Qv(ξv). (2.3)

In the previous equation we used the standard notation ξ∼u to indicate the random vector
which include all variables but the ones belonging to u.
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One common sensitivity measure for a parameter, or set of parameters, is the Sobol’
index [11]

S̄u =
Su

Var[Q]
. (2.4)

Similarly, it is also possible to define for any variable its total contribution to the variance
as

T̄i =

∑
u⊆{1,...,d}

i∈u
Su

Var [Q]
=

Ti
Var [Q]

. (2.5)

From the definitions of Su and Ti it follows that
∑
u S̄u = 1 whereas

∑
i T̄i ≥ 1.

In practice, Sobol’ indices are often estimated by means of Monte Carlo sampling and
there are a variety of methods for doing this [10]. The general idea of using a sampling
approach for GSA analysis is to compute conditional expected values contributions for eval-
uating the terms Su. Another approach to GSA relies on the Polynomial Chaos method,
which provides a convenient way of deriving all the conditional variances directly from the
knowledge of the PCE coefficients. Polynomial Chaos and its extension to GSA are described
in the next sections.

2.1. Polynomial chaos expansions. Let Q(ξ) be a scalar-valued function of a ran-
dom vector ξ = (ξ1, . . . , ξd). Then the truncated polynomial chaos expansion (PCE) of Q
is a spectral expansion of P + 1 terms given as

QPC(ξ) =

P∑

k=0

βkΨk(ξ), (2.6)

where {Ψk}, k = 1, . . . , P , is a family of orthogonal polynomials and βk is the corresponding
PCE coefficient. The kth multivariate orthogonal polynomial Ψk is constructed as a tensor
product of 1D orthogonal polynomials,

Ψk(ξ1, . . . , ξd) =

d∏

i=1

ψaki (ξi), ak = (ak1 , . . . , a
k
d),

where aki is a multi-index, denoting the degree of the ith 1D polynomial for the kth mul-
tivariate polynomial. If we define a maximal total degree p for the family of multivariate
orthogonal polynomials, then the full expansion with d variables and total polynomial order
p will have P + 1 terms given as

P + 1 =
(p+ d)!

p!d!
. (2.7)

A coefficient must be computed for each of these terms in a PCE. The PCE coefficients
are deterministic quantities, and under the formulation of the PCE known as nonintrusive
spectral projection (NISP) [6], they are defined as

βk =
E[Q(ξ)Ψk(ξ)]

E[Ψ2
k (ξ)]

, (2.8)

where the denominator of (2.8) is the squared L2 norm of the kth polynomial basis. The
polynomial basis of the PCE is chosen such that the set of component polynomials are
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orthogonal with respect to the distribution of ξ. For example a normally-distributed ξ
corresponds to the family of orthogonal Hermite polynomials, a uniformly-distributed ξ
corresponds to the family of orthogonal Legendre polynomials, and so on (see the Weiner-
Askey scheme [14]). The norms of a variety of orthogonal polynomial families are known
analytically; see [6]. Thus the main challenge in characterizing a PC expansion is in estimat-
ing its coefficients βk for k = 0, . . . , P . A variety of methods exist for accomplishing this task
including regression methods, full tensor quadrature, sparse-grid quadrature, and sampling
methods [6]. While many quadrature methods can be shown to converge quickly when eval-
uating low-dimensional integrals of smooth functions, these methods become prohibitively
expensive when dealing with high-dimensional and noisy functions [3, 15].

Similarly, computing the PCE coefficients tends to be expensive when the input di-
mension of the function Q is large, because the number of terms included in the expansion
follows the formula (2.7), and even methods based on regression could require the solution
of large linear systems with associated issues related to memory requirements and numerical
precision. Under these circumstances, namely large input dimension and lack of regularity of
the QoI, Monte Carlo may be the only viable method for computing a large number of high-
dimensional integrals, especially because the same set of function evaluations can be used to
estimate multiple PCE coefficients, since only the basis term Ψk changes in Equation (2.8)
for different coefficients.

2.1.1. Application of PCE to global sensitivity analysis. Now that we have
introduced the PCE, we turn to the question of performing sensitivity analysis. Extending
this to Sobol’ indices [2], we can express the variance of QPC as

Var[QPC ] =

P∑

k=1

β2
k E[Ψ2

k ]

and we can compare the ANOVA decomposition, Equation (2.1), to the previous expression
obtaining

P∑

k=1

β2
k E[Ψ2

k ] ≈
∑

u⊆{1,2,...,d}
u 6=0

Su, (2.9)

from which it follows that

Su ≈
∑

k∈Ku

β2
k E[Ψ2

k ], (2.10)

where Ku represents the set of coefficients k for which the multivariate polynomial only
depends on the subset ξu.

Given this approach, estimating conditional variances or Sobol’ indices from PCE co-
efficients is simply a matter of summing the proper squared coefficients multiplied by the
corresponding basis norms. Estimating the total indices is done in a similar manner. Even
for GSA, the main task to be preformed within the PCE is the computation of its coefficients,
which corresponds to a high-dimensional quadrature problem. Sampling approaches could
potentially provide a scalable method for the quadrature, so the computation of coefficients
with both MC and MLMC is described in the following section.

2.2. Monte Carlo and multilevel Monte Carlo sampling. For the QoI Q(ξ), let
QL denote an approximation of Q at the highest resolution level. If one wishes to estimate
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the expectation E[QL(ξ)] using Monte Carlo sampling, they may use the sample average
estimator

Q̂L =
1

N

N∑

i=1

QL(ξ(i)), (2.11)

where N is the number of samples drawn from the joint probability distribution p(ξ). Notice
the estimator Q̂L is itself a random variable with its own mean and variance. Further, the
finite resolution associated to QL introduces an error with respect to Q, and thus the mean-
squared error (MSE) of the estimator Q̂L accounts for this bias with the decomposition

E[(Q̂L − E[Q])2] =
Var[Q̂L]

N
+ (E[Q̂L −Q])2.

Thus to improve the quality of a MC estimate, there are two terms to consider: the variance
and the bias. In this work we focus on the variance contribution which dictates that the
estimator error decays at the convergence rate of O(N−1/2). This slow rate of convergence
is a common shortcoming of standard Monte Carlo methods. Several approaches have been
proposed to reduce the variance of Q̂L; see for instance [4, 5, 8].

Among the various variance reduction strategies, multilevel Monte Carlo (MLMC) rep-
resents the prototypical example and therefore we will focus on it in this work as a starting
point, leaving the extension to arbitrary control variate and multifidelity strategies to fu-
ture investigations. Let Q0, Q1, . . . , QL be a hierarchy of models indexed by `, where an
increasing ` corresponds to an increasing accuracy. Here QL is the highest-fidelity model
and the goal is to efficiently estimate E[QL] by making use of the lower-level model evalua-
tions. Typically, this approach is advantageous, due to the fact that the cost of evaluating
Q`, denoted C`, follows the relation C0 ≤ C1 ≤ · · · ≤ CL. Under these conditions, leverag-
ing cheaper lower-level models can greatly reduce the cost of estimating E[QL]. Using the
linearity of the expectation operator, we observe

E[QL] = E[Q0] + E[Q1]− E[Q0] + · · ·+ E[QL]− E[QL−1] =

L∑

`=0

E[Q` −Q`−1],

where Q−1 = 0. Thus, we are able to estimate the mean of the difference of adjacent levels,
and combine these to form an estimate of the mean at the highest level of accuracy. We
define Y` = Q` −Q`−1 and obtain the expression for the MLMC estimator:

Q̂ML
L =

L∑

`=0

Ŷ` =

L∑

`=0

1

N`

N∑̀

i=1

Q
(i)
` −Q

(i)
`−1. (2.12)

The goal of this approach is to derive an estimator with a reduced variance, while having
the same or lower cost. The idea is that when Var[Y`] decreases as ` → L, fewer samples
need to be allocated to the higher levels, which are expensive to evaluate.

The MSE of Q̂ML
L can be decomposed in terms of the variance and bias

E
[
(Q̂ML

L − E[Q])2
]

= Var[Q̂ML
L ] + (E[QL −Q])2. (2.13)

The variance of the ML estimator can be expressed as

Var[Q̂ML
L ] =

L∑

`=0

Var[Y`]
N`

, (2.14)
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where independent sampling of each Y` guarantees that the covariance terms among levels
in (2.14) are equal to zero (i.e. Cov[Y`, Y`′ ] = 0, `′ 6= `). The optimization problem for
sample allocation is defined to minimize the total computational cost across levels, while
achieving a balance between the deterministic and stochastic error contributions (bias and
variance, respectively) in (2.13). Defined in this manner, the optimization problem has a
closed-form solution, which can be found in [4].

2.3. MLMC estimation of PCE coefficients. As an example of the MLMC formu-
lation, we will now describe how to obtain an optimal sampling allocation for the kth PCE
coefficient βk. The ML estimator for βk is

β̂k =
1

E[Ψ2
k ]

L∑

`=0

Ŷ`Ψk

=
1

bk

L∑

`=0

1

N`

N∑̀

i=1

(Q
(i)
` −Q

(i)
`−1)Ψ

(i)
k

=
1

bk

L∑

`=0

1

N`

N∑̀

i=1

P
(i)
`,k

(2.15)

where P`,k = (Q` − Q`−1)Ψk and bk = E[Ψ2
k ]. Moreover, if C` denotes the cost of each

sample at level `, the total cost is given by

Ctot =

L∑

`=0

N`C`.

To formulate the optimization problem, we consider the variance of β̂k, where again we
enforce independent sampling on each level:

Var[β̂k] =
1

bk

L∑

`=0

Var[P`,k]

N`
.

The optimal sample allocation can be derived by solving the minimization problem

min
N0,...,NL

L∑

`=0

N`C` + λ2
(
Var[β̂k]− ε2

)
, (2.16)

where λ2 is a Lagrange multiplier, N`C` is the total cost of sampling the QoI at the `th
level, and ε2 is the bias error that defines the target variance of the estimator within the
error balance constraint. The solution to this problem is related to the canonical MLMC
optimal sampling strategy, derived in the work of Giles [4].

For a target estimator variance ε2, the optimal sampling conditions can be expressed in
closed form as

N` = λ

√
Var[P`,k]

bk C`
,

where

λ = ε−2
L∑

`=0

√
Var[P`,k] C`

bk
.
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This approach can result in a significant reduction in the estimator variance. From a
practical standpoint, it is worth noting that the variances necessary to compute the optimal
sampling conditions, Var[P`,k], are not known a priori. As a result, it is necessary to proceed
in an iterative fashion until the relevant statistics converge [4].

The goal of this work is not to solely build a PCE surrogate, but rather to use a PCE
surrogate for the purpose of GSA. Therefore in the next section we extend the optimal
sample allocation problem to target an ensemble to PCE coefficients, and by extension, the
Sobol’ indices.

3. Theory/Derivation. To extend the MLMC optimization problem to GSA-related
metrics, we first consider the variance of the PCE surrogate variance. It is important to
note that each estimated coefficient, β̂k, is a random variable and therefore the variance
obtained through the PCE expansion is now a random variable as well. The goal of this
section is to derive the variance of the variance estimator Var [QPC ], where Var [QPC ] also
corresponds to the sum of variances, Su; see Equation (2.1).

The true variance Var [Q] can be approximated via PCE as

Var[QPC ] =

P∑

k=1

β̂2
k bk, (3.1)

and if we now consider that each β̂k is a random variable, we can obtain the expression

Var

[
P∑

k=1

β̂2
k bk

]
=

P∑

k=1

Var[β̂2
k] b2k +

P∑

k=1

P∑

z=1
z 6=k

bkbzCov
[
β̂2
k, β̂

2
z

]
, (3.2)

which corresponds to the variance of the variance estimator based on the PCE expansion.
This expression, given the presence of shared samples among coefficients, also incorporates
the interaction terms between pairs of coefficients. Similar to the variance decomposition,
it is now possible to write

Var[Su] = Var

[ ∑

k∈Ku

β̂2
k bk

]

=
∑

k∈Ku

Var[β̂2
k] b2k +

∑

k∈Ku

∑

z∈Ku
z 6=k

bkbzCov
[
β̂2
k, β̂

2
z

]
.

(3.3)

If one is able to characterize (3.3) in terms of raw moments of the QoIs and the poly-
nomial bases, then the variance of a particular Sobol’ index can be approximated without
needing to compute multiple realizations, and a sample allocation method can then be
derived to minimize any Var[Su] for a prescribed cost.

3.1. Derivation of variance and covariance terms. We begin by deriving an ex-
pression for Var[(β̂k)2] from (3.3) in terms of moments of Q`, ` = 0, . . . , L and Ψk. We know

from the Central Limit Theorem that each β̂k will be normally distributed with mean given
by βk, if unbiased, and variance given as

Var[β̂k] =
1

b2k

L∑

l=0

Var [P`,k]

N`
.
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In general, for a normally-distributed random variable, X ∼ N (µ, σ2), we have

Var[X2] = E[X4]− E[X2]2

= (µ4 + 6µ2σ2 + 3σ4)− (µ2 + σ2)2

= 4µ2σ2 + 2σ4.

Using this fact, the variance of our estimator can be expressed as

Var[(β̂k)2] = 4E[β̂k]2Var[β̂k] + 2Var[β̂k]2 (3.4)

Deriving an expression for the covariance terms in (3.2) will require a different approach,
using the bilinearity of the covariance and matching correlated samples of the QoI. We will
start by considering a single-level estimator and then move on to the multilevel case. Thus,
for the single-level case, the covariance can be expressed as (see Appendix A for details of
the derivation)

Cov
[
(β̂k)2, (β̂z)

2
]

= Cov



(

1

E[Ψ2
k ]N

N∑

i=1

QiΨ ik

)2

,

(
1

E[Ψ2
z ]N

N∑

i=1

QiΨ iz

)2



=
1

E[Ψ2
k ]2E[Ψ2

z ]2

[
E[Q4Ψ2

kΨ
2
z ]− E[Q2Ψ2

k ]E[Q2Ψ2
z ]

N3

+
(2N − 2) (E[Q3Ψ2

kΨz]E[QΨz]− E[Q2Ψ2
k ]E[QΨz]

2)
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(3.5)

The multilevel estimator for the covariance with L levels, which will build upon the
expression derived for the single-level estimator in the previous section, is presented in the
following. First we define
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1
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k

(3.6)

as the single level estimator for the discrepancy function P`,k = Y`Ψk at level ` with respect
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to the PCE coefficient k. Using this notation, we write the multilevel covariance term as:
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 .
(3.7)

The derivation for the above term is reported in detail in Appendix B. We have ex-
pressions for the multilevel variance and covariance, expressed in terms of moments of our
multilevel QoI and the orthogonal polynomials. We can then use Equation (3.3) to arrive
at an estimate of the variance of the conditional variances, Su.

Next, we use this composition for Equation (3.3) to derive an optimal sample allocation
by either minimizing estimator variance subject to an aggregate cost constraint, or alterna-
tively minimizing cost subject to a prescribed level of estimator variance. Here, we adopt
the former approach to determine the sample profile (N0, N1, . . . , NL) that minimizes the
stochastic error within a prescribed computational budget:

min
N0,...,NL

Var[Su] subject to

L∑

`=0

N`C` ≤ C̄, 0 ≤ N0, . . . , NL, (3.8)

where C̄ is some upper limit on the total cost of the ML estimator. The choice to minimize



M. Merritt, G. Geraci, M. Eldred, T. Portone 77

the variance subject to a cost constraint versus the classical approach of minimizing the
cost subject to a variance constraint [4] comes down to a matter of practicality. It is more
likely that a user of this method will have a limited computational budget in mind as a
target, rather than a target accuracy for a particular conditional variance term, which may
be difficult to determine prior to performing GSA.

For this study, we will solve (3.8) numerically, using SciPy’s optimization with the
Sequential Least Squares Programming (SLSQP) algorithm. In the next section, we present
preliminary results illustrating the results of this method.

4. Numerical results. The following results are obtained using the Ishigami function,
a standard test problem in the GSA literature [2], adapted here to include three levels of
approximation with an increasing cost.

4.1. Single-level results. The single-level Ishigami function is

Q = sin(ξ1) + a sin2(ξ2) + bξ4
3 sin(ξ1), (4.1)

where ξ1, ξ2, and ξ3 are uncertain parameters following a uniform distribution on [−π, π],
with a and b being constants. Using multivariate Legendre polynomials, we will compute a
single-level PCE of (4.1) where we let a = 7 and b = 0.1.

We first consider the variability of the estimators β̂k, for the first 50 PCE coefficients
computed using 100 samples. We compute 2000 replicates of the set of PCE coefficients and
then plot the mean and two standard deviations as error bars for each coefficient below.
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Fig. 4.1: Mean Ishigami PCE coefficients k = 0, . . . , 49, error bars denote 2 standard devi-
ations.

Figure 4.1 shows the increasing variance of the PCE coefficients with the polynomial
order, which is to be expected. As the order of an orthogonal polynomial increases, it will
also result in a larger variance.

4.2. Multilevel results. Continuing to the multilevel form of the Ishigami function,
we define a three level model hierarchy, with associated costs, as follows:

Q = sin(ξ1) + a sin2(ξ2) + bx4
3 sin(ξ1)

Q0 : a = (0.6)7.0, b = (0.6)0.1, C0 = 1

Q1 : a = (0.8)7.0, b = (0.8)0.1, C1 = 10

Q2 : a = (1.0)7.0, b = (1.0)0.1, C2 = 100

(4.2)
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We can then compute a ML estimate of the PCE coefficients, using the method described
in Section 2.3, from the estimator

β̂k =
1

bk

L∑

`=0

1

N`

N∑̀

i=1

P
(i)
`,k =

1

bk

L∑

`=0

1

N`

N∑̀

i=1

(Q
(i)
` −Q

(i)
`−1)Ψ

(i)
k . (4.3)

As we have shown in Section 3.1, we are able to propagate the uncertainty in the
estimated PCE coefficients (4.3) through to the conditional variances, resulting in a new
derivation for Var[Su]. To verify the results of the derivation in Section 3.1, we compute 1000
independent realizations of the conditional variances (S1,S2,S3,S1,2,S1,3,S2,3,S1,2,3) for the
Ishigami function. To do this, we compute 1000 realizations of the full set of PCE coefficients
up to a total polynomial order of 5. For each realization, we estimate the conditional terms
Su and Ti along with their predicted variance. The result of this computation is one estimate
of all Var[Su] and Var[Ti], computed from the 1000 realizations, along with 1000 estimations
for Var[Su] and Var[Ti], computed using the relationships derived in the previous section.
The results of this numerical experiment are reported in Fig. 4.2.
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Fig. 4.2: Blue bars indicate the variance of conditional variances from the data. Black error
bars represent a 2 standard deviation interval of the estimated variance from the derivation.

Given a valid estimator for the variance of a set of Sobol’ indices and a ML estimator for
the PCE coefficients, we turn to the issue of verifying the optimal sample profile described
by (3.8). To demonstrate the advantages of this approach, we compare the accuracy of
the conditional variances computed from evaluating the single-level function only and by
using the MLMC estimator with optimal sampling. Figure 5.1 shows the PDFs of each
conditional variance computed using 1000 realizations of both the SL and optimal MLMC
methods, where the optimal MLMC targets the conditional variance S1. We note that our
approach offers flexibility in determining which conditional term or set of terms we want to
target. To properly resolve each conditional contribution, we estimate all PCE coefficients
up to a total polynomial order of 8. The set of PDFs below corresponds to SL and ML
estimators with the same evaluation cost, corresponding to 500 evaluations of the single-
level estimator. Finally, we include a reference value for each conditional variance, which
corresponds to the PCE truncation level we use.

The ML sample profile determined by the optimization routine is given by: [N0, N1, N2] =
[12447, 784, 264]. We noticed a large variability in the solution returned by the optimizer,
dependent on the initial guess and resolution level of the statistical moments needed to
evaluate the objective function of (3.8). This leads us to speculate about the existence of
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multiple local minima and possible noise being present in the objective function entering
the optimization. With this in mind, it is likely that the sample profile obtained for this
problem is suboptimal. This point requires further study in future work. We do, however,
stress the point that even this suboptimal sample profile results in a ML estimator for a
given Sobol’ index that is more accurate and has a lower variance than the corresponding
SL estimator in every case we observe. Further study will require an investigation of the
optimization problem and the resulting solutions. An ideal situation would be to derive the
optimal sample allocation in closed form, which is a feature of MLMC methods focused on
the mean estimator.

5. Conclusion and perspectives. In this work, we explored a hybrid MLMC-PCE
approach for GSA that leverages the ANOVA decomposition traditionally used with PCE,
but for which the polynomial coefficients are evaluated by means of MLMC. This hybrid
approach enables reduction of overall cost by fusing information from multiple sources with
distinct accuracy and cost. We focused on developing the main components of the algorithm
and presenting preliminary numerical results that demonstrate how the hybrid approach is
mathematically sound. In the continuation of the work, we plan to pursue a comprehensive
numerical campaign to test the trade-off of this hybrid algorithm when compared with
traditional PCE counterparts as a function of input dimension, function regularity, and the
presence of noisy data.

REFERENCES

[1] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup, Multilevel Monte Carlo meth-
ods and applications to elliptic PDEs with random coefficients, Computing and Visualization in
Science, 14 (2011), p. 3.

[2] T. Crestaux, O. Le Maıtre, and J.-M. Martinez, Polynomial chaos expansion for sensitivity anal-
ysis, Reliability Engineering & System Safety, 94 (2009), pp. 1161–1172.

[3] J. Dick, F. Y. Kuo, and I. H. Sloan, High-dimensional integration: the quasi-monte carlo way, Acta
Numerica, 22 (2013), p. 133.

[4] M. B. Giles, Multilevel Monte Carlo methods, Acta Numerica, 24 (2015), p. 259.
[5] A. A. Gorodetsky, G. Geraci, M. S. Eldred, and J. D. Jakeman, A generalized approximate

control variate framework for multifidelity uncertainty quantification, Journal of Computational
Physics, 408 (2020), p. 109257.
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Appendix A. Single level covariance Cov
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(A.1)

We will now consider all the covariance contributions separately. The first term is
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where Pz and P ′z indicate i.i.d. realizations of Pz.
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For symmetry, the third term is simply
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The last contribution is obtained as

Cov

 N∑
i=1

P
(i)
k

N∑
j=1
j 6=i

P
(j)
k ,

N∑
i=1

P (i)
z

N∑
j=1
j 6=i

P (j)
z



= 2Cov

 N∑
i=1

P
(i)
k

N∑
j>1

P
(j)
k ,

N∑
i=1

P (i)
z

N∑
j=1
j 6=i

P (j)
z



= 2Cov

 N∑
i=1

N∑
j>1

P
(i)
k P

(j)
k , P (i)

z

N∑
j=1
j 6=i

P (j)
z +

N∑
q=1
q 6=i

P (q)
z

N∑
j=1
j 6=q

P (j)
z



= 2Cov

 N∑
i=1

N∑
j>1

P
(i)
k P

(j)
k , P (i)

z

P (j)
z +

N∑
q=1
q 6=i,j

P (q)
z

+

N∑
q=1
q 6=i

P (q)
z

N∑
j=1
j 6=q

P (j)
z


= 2Cov

[
N∑
i=1

N∑
j>1

P
(i)
k P

(j)
k , P (i)

z

P (j)
z +

N∑
q=1
q 6=i,j

P (q)
z



+ P (j)
z

P (i)
z +

N∑
r=1
r 6=j,i

P (r)
z

+

N∑
q=1
q 6=i,j

P (q)
z

P (i)
z + P (j)

z +

N∑
r=1

r 6=q,i,j

P (r)
z

]

= 2Cov

 N∑
i=1

N∑
j>1

P
(i)
k P

(j)
k , 2P (i)

z P (j)
z + 2P (i)

z

N∑
q=1
q 6=i,j

P (q)
z + 2P (j)

z

N∑
r=1
r 6=j,i

P (r)
z +

N∑
q=1
q 6=i,j

P (q)
z

N∑
r=1

r 6=q,i,j

P (r)
z


= 4

N(N − 1)

2
Cov

[
PkP

′
k, PzP

′
z

]
+ 4

N(N − 1)(N − 2)

2
Cov

[
PkP

′
k, PzP

′′
z

]
= 2N(N − 1)

(
E
[
Q2ΨkΨz

]2 − E [QΨk]2 E [QΨz]2
)

+ 4N(N − 1)(N − 2)
(
E
[
Q2ΨkΨz

]
E [QΨk]E [QΨz]− E [QΨk]2 E [QΨz]2

)
= 2N(N − 1)E

[
Q2ΨkΨz

]2
+ 4N(N − 1)(N − 2)E

[
Q2ΨkΨz

]
E [QΨk]E [QΨz]

− 2N(N − 1)(1 + 2(N − 2))E [QΨk]2 E [QΨz]2

(A.5)



M. Merritt, G. Geraci, M. Eldred, T. Portone 83

Appendix B. Multilevel MC covariance Cov
[(
β̂k

)2

,
(
β̂z

)2
]
. In this section, the

derivation of the multilevel covariance term in Equation 3.7 is presented.
Proof. The multilevel MC covariance term can be written as
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where each single level estimator P̂`,k is defined as
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There are 4 terms that need to be computed, however for symmetry only 3 of them
need to be derived explicitly. The first term can be written as
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For this term the derivation of each single level estimator is identical to the single level
covariance term derived in the previous section.

The second (and third) term can be written as
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The term Cov
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can be evaluated in term of moments of the
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The first term of the previous expression, Eq. B.5, can be written as
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The second term of Eq. B.5 can be manipulated as it follows
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Finally, the last term of Eq. B.1 is written as
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by using the single level derivation.
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The first term of the previous expression can be simplified as
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The last two terms of Eq. B.8 are similar and can be obtained as demonstrated below
for the first of them
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TESTING THE LIMITATIONS OF THE NONVARIATIONAL FINITE
ELEMENT METHOD FOR ELLIPTIC PDES

DIANA M. MORALES∗ AND KELSEY L. DIPIETRO†

Abstract. The optimal transport problem focuses on finding the optimal transportation path from
one location to another with minimal cost. Its mathematical formulation leads to a PDE constrained
optimization problem. Under the assumption of quadratic cost, the solution to the optimal transport problem
is equivalent to solving the Monge-Ampère equation – a fully nonlinear second-order elliptic PDE. The
numerical solution to the Monge-Ampère equation has recently been utilized to provide robust moving mesh
adaptivity for solving partial differential equations. Because of its use for mesh adaptivity and several other
applications, its numerical solution has been the recent topic of much research, including finite difference,
biharmonic finite element, and least squares methods. This work focuses on implementing a finite element
formulation of the Monge-Ampère equation, specifically in nonvariational form, following the work of [18, 19],
using Intrelab, a subdirectory of the Trilinos package Intrepid [16] that provides an interface between Intrepid
and Matlab. We present convergence studies of using the nonvariational finite element method for elliptic
problems that cannot be put into the standard variational form. We show and present results on applying
the nonvariational finite element methods to fully nonlinear elliptic problems, with a particular focus on the
Monge-Ampère equation.

1. Introduction. Optimal mass transport theory has a wide range of applications.
Application examples include data science for image processing, mesh adaptivity, machine
learning, and seismic imaging [20, 2, 14, 9, 11, 6, 10, 13, 2, 23]. The optimal transport
problem focuses on finding the optimal transportation path of a density from one location
to another with minimal cost, as shown in Figure 1.1.

Fig. 1.1: An illustration of optimal transportation map: T : X → Y [24]

This problem was originally posed by Gaspard Monge in 1781 [5]. Mathematician and
economist Leonid Kantorovich further progressed the transportation theory field during
World War II. For this reason, the problem formulation is often times referred to as the
Monge-Kantorovich (MK) transportation problem. The Kantorovich formulation of the
transportation problem can be seen as a generalization of the Monge formulation. Monge’s
original optimal transport problem is as follows: given µ ∈ P(X) and ν ∈ P(Y ),

minimize M(T ) =

∫

X

c(x, T (x))dµ(x) (1.1)

subject to ν = T∗µ and over µ-measurable maps T : X → Y .

Under quadratic cost c(x) = 1
2 |T (x) − x|2, Brenier [4] showed that the solution of the

optimal transport problem is the gradient of a convex mesh potential, such that T (x) = ∇u.

∗University of Notre Dame, dmorale3@nd.edu
†Sandia National Laboratories, kdipiet@sandia.gov
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Using this relationship and a change of variables equation (1.1) simplifies to finding the
solution of the Monge-Ampère equation,

det(D2u) = f, inΩ, u = 0 on ∂Ω, (1.2)

where D2u is the Hessian matrix of u.
The Monge-Ampère equation is a fully nonlinear elliptic second-order PDE. Monge-Ampère
equations were first studied by Gaspard Monge, in 1784, followed by André-Marie Ampère
in 1820. The numerical solution to the Monge-Ampère equation can be found through vary-
ing methods, such as finite difference [9, 3, 14, 21], finite element methods [12, 20], least
squares method [22], and by directly solving the optimization form [15]. The methods range
in success, some can only find weak or viscosity solutions and others suffer from instabilities
due to the conditional ellipticity of the operators. We do not summarize the benefits and
disadvantages of each of the methods in this article, but point the interested reader to the
review article [7]. Because of its success of creating adaptive meshes for partial differential
equations [20], which is the ultimate goal of this research, the numerical method utilized in
this article is the nonvariational finite element method of Lakkis and Pryer [18, 17].

2. Nonvariational Finite Element Method. The mathematical formulation of the
nonvariational finite element method [NVFEM] described in [18] begins by finding u such
that

A : D2u = f in Ω and u|∂Ω = g. (2.1)

Following standard FEM notation, A : Ω → Rd×d is the coefficient matrix. For this type of
second order elliptic boundary value problem, the standard finite element method might not
always yield the appropriate solution. The standard FEM results in rewriting the operator
in divergence form which can potentially introduce a convective term. This leaves open the
possibility of the problem becoming convection-dominated and unstable for FEM. Instead,
[18] suggests directly discretizing the strong form over the standard weak form discretization
of FEM. For this method, an appropriate finite element Hessian approximation for the
elliptic operator is needed. Introducing the following finite element spaces:

V := {Φ ∈ H1(Ω) : Φ|K ∈ Pp,∀K ∈ τ} (2.2a)

V̊ := V ∩H1
0 (Ω) = {Φ ∈ V : Φ|∂Ω = 0}, (2.2b)

where Pk is the linear space of polynomials in d variables of degrees no higher than k > 0.
The mesh size function is denoted as h(x). The problem is integrated against the test
function φ ∈ H1

0 (Ω) as

〈Lu, φ〉 = 〈A : D2u, φ〉 = 〈f, φ〉. (2.3)

In order to discretize (2.3), [18] find a finite element approximation of the Hessian. The
distribution of the Hessian is typically given as a function v ∈ H1(Ω) defined as

〈D2v|φ〉 = −〈∇v ⊗∇φ〉 ∀φ ∈ C∞0 (Ω), (2.4)

where C∞0 (Ω) denotes the Schwartz class of functions on Ω given as,

C∞0 (Ω) := {φ ∈ C∞(Ω) : supp φ compact in Ω}. (2.5)
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An important thing to note is that φ cannot be chosen as φ ∈ V̊ since too much information
will be lost on the boundary and the finite element Hessian will not necessarily be zero on
the boundary. For this reason, the test function φ must be specialized. The domain of the
function D2v in (2.4) must be extended so that it includes some test functions that aren’t
compactly supported. An extension can be found by letting n : ∂Ω → Rd be the outward
pointing normal of Ω, taking v ∈ C2(Ω) ∩ C1(Ω), and using integration by parts to get

〈D2v, φ〉 = −〈∇v ⊗∇φ〉+ 〈∇v ⊗ nφ〉∂Ω ∀ φ ∈ C1(Ω) ∩ C0(Ω). (2.6)

We define v ∈ V as a piecewise polynomial in the triangulation. We know it is continuous,
but potentially not differentiable. For this reason, the gradient ∇v is a function in Pp−1 and
the limit at the boundary is defined almost everywhere. Note the right hand side for (2.6)
is well defined for φ ∈ V and is equivalent to the right hand side of (2.4) when φ = 0 for

boundary values. This results in the following finite element form of the Hessian of V ∈ V̊
as the unique H[V ] ∈ V such that

〈H[V ], Φ〉 := −〈∇V ⊗∇Φ〉+ 〈∇V ⊗ nΦ〉∂Ω ∀ Φ ∈ V, (2.7)

implying H is a linear operator on V̊. Inserting the Hessian into the elliptic model problem
reduces the problem to finding U ∈ V̊ such that

〈A : H[U ], Φ̊〉 = 〈f, Φ̊〉 ∀ Φ̊ ∈ V̊ (2.8)

The final nonvariational finite element form for the discretization of (2.8) is given as U = Φ̊u,
where u ∈ RN is the solution to the linear system:

Du :=

d∑

α=1

d∑

β=1

Bα,βM−1Cα,βu = f (2.9)

with the following components of (2.9):

Bα,β := 〈Φ̊,Aα,βΦT 〉 ∈ RN̊×N (2.10a)

M := 〈Φ,ΦT 〉 ∈ RN×N (2.10b)

Cα,β := −〈∂βΦ, ∂αΦ̊T 〉+ 〈Φnβ , ∂αΦ̊T 〉∂Ω ∈ RN×N̊ (2.10c)

f := 〈f, Φ̊〉 ∈ RN̊ (2.10d)

This formulation is generally not sparse, making several efficient iterative methods essentially
useless to finding a solution. In order to recover sparsity in the formulation, [18] suggest
augmenting the solution space with the Hessian by using a generalized Schur complement.
The matrix D is the sum of Schur complements Bα,β M−1 Cα,β , therefore a new (d2 + 1)2

block matrix E can be introduced (letting d = 2 in this case),

E =




M 0 0 0 −C1,1

0 M 0 0 −C1,2

0 0 M 0 −C2,1

0 0 0 M −C2,2

B1,1 B1,2 B2,1 B2,2 0




(2.11)

It has been shown in [18] that solving the system

Ev = b, (2.12)

with v = (h1,1,h1,2,h2,1,h2,2,u)T and b = (0,0,0,0, f)T is equivalent to solving the system
(2.9). This will be the structure we use to solve all our examples, including the nonlinear
cases given in the following sections.
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2.1. Nonhomogeneous Dirichlet Boundary Conditions. In general, the elliptic
problems we want to solve, particularly the Monge-Ampère equation, do not have homoge-
neous Dirichlet boundary conditions. For now, we just address nonhomogeneous Dirichlet
conditions and leave the application of other physically relevant boundary conditions for
future work.

Under the assumption of Dirichlet boundary conditions u = g on ∂Ω, we can enforce
them through the block representation (where dc stands for dirichlet condition boundary
nodes),

[
I 0

Edc E

] [
vdc

v

]
=

[
bdc

b

]
. (2.13)

Where vdc = [hdc
1,1,h

dc
1,2,h

dc
2,1,h

dc
2,2,u

dc]T ,bdc = [0,0,0,0,g]T . The matrix Edc is de-
fined as

E =




M 0 0 0 −Cdc
1,1

0 M 0 0 −Cdc
1,2

0 0 M 0 −Cdc
2,1

0 0 0 M −Cdc
2,2

B1,1 B1,2 B2,1 B2,2 0.



. (2.14)

Given a Φdc = {Φ1, . . . ΦNdc
}, the Dirchlet components of (2.14) can be defined as

Cdc
α,β =− < ∂βΦ, ∂αΦ

T
dc > + < Φnβ , ∂αΦ

T
dc >∂Ω∈ RN×Ndc , (2.15a)

gj =g(xj)Φj ∈ RNdc (2.15b)

The block matrix (2.13) is trivially solved as

Ev = b−Edcbdc. (2.16)

Sections 3.3 and 3.4 gives an example of a nonhomogenous boundary condition applied
using this method.

3. Examples of the Nonvariational Finite Element Method. Since the ultimate
goal of our project is to create robust solution methods for the Monge-Ampère equation
in the Trilinos [25], we begin by recreating the test problems from [18] using Intrelab and
Intrepid [16]. In [18], four benchmark problems are introduced. The following experiments
are taken on Ω, where Ω is the square S = [−1, 1]× [−1, 1] ⊂ R2. For the first two examples,
we let the diffusion matrix be

A(x) =

[
1 b(x)

b(x) a(x)

]
(3.1)

3.1. Nondifferentiable Coefficient. Nondifferentiable coefficients are typically chal-
lenging for standard finite element methods. This example will demonstrate how the non-
variational finite element method will fair with these coefficients. We take a(x) and b(x) to
be the following:

a(x) =
(
x2

1x
2
2

)1/3
+ 1,

b(x) = 0
(3.2)
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and choose the right hand side f to be such that the exact solution is u(x) = exp
(
−10|x|2

)
.

Figure 3.1 gives a comparison of the computed solution of 2.12 discretized with linear P1

finite elements using Intrelab in MATLAB on a 64×64 grid, where the system is solved with
either the backslash operator or an LU-decomposition. Our solution follows the expected
order of convergence for P1 elements, as seen in Figure 3.2. This shows that our Intrelab
implementation is working as expected and confirms the results of Lakkis and Pryer [18].

Fig. 3.1: The comparison between the Nonvariatonal finite element method (left) and the
exact solution (right) for example 3.1 on a 64× 64 grid

Fig. 3.2: Second order convergence for the Nondifferentiable operator example 3.1

3.2. Convection Dominated Coefficient. For this experiment, we take a convection
dominated operator. This example demonstrates how the nonvariational numerical method
can avoid some of the undesired effects of the standard finite element method when dealing
with convection dominated operators. We take matrix A in (3.1) with

a(x) = arctan
(
K(|x|2 − 1)

)
+ 2,

b(x) = 0
(3.3)

The standard finite element method, written in divergence form, would oscillate for large
values of K. We choose the right hand side f to be such that the exact solution to the
example is u(x) = sin(πx1)sin(πx2). It’s shown in 3.3 that the NVFEM does not result in
the oscillations expected with the standard finite element method.
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Fig. 3.3: The comparison between the Nonvariatonal finite element method (left) and the
exact solution (right) for example 3.2 on a 64× 64 grid

Fig. 3.4: Second order convergence for the convection dominated coefficient example 3.2

3.3. Singular Solution. The following example is to test a singular solution. In this
case, we let a(x) and b(x) in 3.1 be:

a(x) = sin

(
1

|x1|+ |x2|+ 10−15

)
+ 2,

b(x) = 0

(3.4)

This operator in particular has oscillations at the origin, at 0. We let f be such that the

exact solution is u(x) =
(
2− x2

1 − x2
2

)1/2
. This solution u ∈ H1(Ω) but u /∈ H2(Ω). The

domain has singularities on the corners and therefore a quadratic convergence rate is not
achieved.

3.4. Nonsymmetric Operator. For this example, the operator is chosen so that b(x)
is nonzero. Ellipticity must still be maintained, therefore a(x) is chosen such that the trace
of A overtakes its determinant. We let a(x) and b(x) be the following:

a(x) = 2,

b(x) =
(
x2

1x
2
2

)1/3 (3.5)
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Fig. 3.5: The comparison between the Nonvariatonal finite element method (left) and the
exact solution (right) for example 3.3 on a 64× 64 grid

Fig. 3.6: Convergence for the singular solution example 3.3

We also let the f right hand side be chosen such that the exact solution is:

u(x) =




x1x2(x2

1−x2
2)

x2
1+x2

2
, x 6= 0

0, x = 0
(3.6)

This creates a nonsymmetric Hessian operator. Figure 3.7 shows the comparison between
the nonvariational method and the exact solution while Figure 3.8 shows the convergence
graph of the nonvariational method.
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Fig. 3.7: The comparison between the Nonvariatonal finite element method (left) and the
exact solution (right) for example 3.4 on a 64× 64 grid

Fig. 3.8: Second order convergence for the Nonsymmetric operator example 3.4

4. Nonvariational Method for Nonlinear Elliptic Problems. Since our ultimate
goal is to have an efficient finite element numerical solver for the Monge-Ampère equation for
moving mesh adaptive methods for solving PDEs, we need to address how the nonvariational
method described in Section 2 applies to nonlinear partial differential equations. Following
the lead of [19], we can construct an iterative method to find the solution of the fully
nonlinear PDE. Assuming a model problem,

N [u] = F (D2u)− f = 0, (4.1)

where D2u is the Hessian of u. The authors in [19] propose using a Newton’s method to
solve (4.1), though other nonlinear solvers could be considered. We focus on implementing
the approach where the Newton’s method is applied to (4.1) and the resulting Newton’s
step is discretized using the NVFEM. This equates to solving the following system

N(D2un) : D2un+1 = g(D2un), (4.2)

where

N(X) := F ′(X), (4.3a)

g(X) := f − F (X) + F ′(X) : X. (4.3b)
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Equation (4.3) can be seen as a form of (2.1) and can be discretized in finite element
space using the Nonvariational finite element method. This can be stated as given an initial

guess U0 := Π0u
0 for each n ∈ N0, find Un+1,H[Un+1] ∈

◦
V× Vd×d such that,

< H[Un+1], Φ > + < ∇Un+1 ⊗∇Φ− < ∇Un+1 ⊗ nΦ >= 0, ∀Φ ∈ V (4.4a)

< N(H[Un]) : H[Un+1], Ψ >=< g(H[Un], Ψ >, Ψ ∈
◦
V, (4.4b)

where H[U ] = D2U , the discrete Hessian formulation (2.7). From equations (4.3),(4.4)
we can now apply the method to a variety of nonlinear partial diffential equations, with a
particular target on the Monge-Ampère equation.

4.1. Test Problem: Smooth Nonlinearity. To test our implementation of the
method, we begin with a simple fully nonlinear problem with a smooth nonlinearity. The
nonlinear problem considered is

N [u] := sin(∆u) + 2∆u− f =0 inΩ (4.5a)

u =0 on ∂Ω (4.5b)

Taking a Newton’s step on (4.5) leads us to the problem of given an initial guess u0, for
n ∈ N0 find un+1 such that

(cos(∆un) + 2)I : D2(un+1 − un) = f − sin(∆un)− 2∆un. (4.6)

Which can be easily discretized using (4.4). The example is calculated in 2D on a square
domain Ω = [−1, 1]2 and triangular mesh. The right hand side of (4.5) is chosen so that
the exact solution u(x) = exp

(
−10|x|2

)
. The initial guess is chosen to be u0, H0 = 0.

Figure 4.1 shows a comparison between the computed solution using the NVFEM and
the exact solution. We observe that the method attains optimal convergence for P1 finite
elements and can be solved to residual tolerance of 10−12. This problem took 8 iterations
to converge and is a critical stepping stone into formulating the Monge-Amère equation to
the NVFEM using Intrelab.

4.2. Test Problem: The Monge-Ampère Equation. The main reason we have
focused on the nonvariational finite element method is that it can be used to solve the
Monge-Ampère equation for adaptive meshing algorithms. In this section, we outline how
the method can be applied to the Monge-Ampère equation.

In particular, Lakkis and Pryer note in [19], that there are certain limitations in applying
the methods of Section 4 to the Monge-Ampère equation. The equation (1.2) has conditional
ellipticity, which can cause convergence issues if initial guess is not carefully chosen [18, 1].
Therefore, we must make sure that the initial Newton’s guess u0 is strictly convex. Also,
special care must be taken to ensure of the convexity of the subsequent Newton iterations
[18].

Recalling the form of the Monge-Ampère equation (1.2) det(D2u) = f , we can put in
into the Newton’s form outlined in 4.

To impose necessary convexity conditions the Newton’s method for (1.2) can then be
given as

DN [u]v = CofD2u : D2v, (4.7a)

N(D2un) = CofD2un, (4.7b)

g(D2un) = f − detD2un + CofD2un : D2un. (4.7c)
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Fig. 4.1: The comparison between the Nonvariatonal finite element method (left) and the
exact solution (middle) for example (4.5) on a 64 × 64 grid until convergence is reached
(tol = 1e− 12). The right figure gives the expected quadratic convergence for the solution
as the grid is refined.

Discretizing (4.7) becomes, for an initial guess U0 := Π0u
0 for each n ∈ N0 find

(Un+1,H[Un+1]) ∈
◦
V× Vd×d

< H[Un+1], Φ > +

∫

Ω

∇Un+1 ⊗ Φ−
∫

∂Ω

∇Un+1 ⊗ nΦ = 0 ∀Φ ∈ V (4.8a)

< CofD2Un : H[Un+1], Ψ >=< f + detD2Un, Ψ > ∀Ψ ∈
◦
V. (4.8b)

Where Cof(D2Un) is the cofactor matrix of the Hessian.
This falls into the same form as the nonvariational finite element method (2.1), where

the coefficient matrix A has been replaced by the cofactor matrix of the Hessian, given by
the solution. In addition, the right hand side as additional dependence on the determinant
of the Hessian D2UN , which once again should be easy to calculate from the solution, given
that we calculate D2UN . Since we will be solving the expanded system for both D2UN , UN ,
we should be able to calculate the cofactor matrix from the Hessian matrix quite easily from
the previous solution of D2UN . That allows us to calculate both D2UN+1, UN+1 iteratively
until the Newton’s method converges.

A big challenge of using this method is coming up with an initial guess both for U
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and the Hessian H[U0]. Due to ellipticity constraints depending on the convexity of the
problem, we want the initial guess to be convex. In addition, it is preferable to not have to
interpolate the Hessian values from U0, but rather compute them directly from the initial
condition. As the initial condition for the Newton’s step and nonvariational finite element
method (4.8a),(4.7), Lakkis and Pryer use a trick from Dean and Glowinski [8] and find the
initial condition by solving the linear problem,

∆U0 = 2
√
f inΩ (4.9a)

U0 = g on ∂Ω (4.9b)

4.3. Monge-Ampere in Intrelab. Because of the conditional ellipticity of the Monge-
Ampére, particular care needs to be taken to implement it using Intrelab. At the time of
submission of this article, we have implemented a Newton’s method with a NVFEM dis-
cretization of the Monge-Ampére equation. However, for a simple test problem, we observe
that the method is not converging in Intrelab, likely due to a loss of convexity between
subsequent Newton’s iterations. We are investigating possible remedies for the convergence
issues that include increasing the approximation order of the finite elements (would need
to be migrated out of Intrelab, which only offers P1 elements), imposing convexity through
constraints using PDE constrained optimization, and implementing other nonlinear solvers.

5. Conclusion. We have done a thorough analysis of Lakkis and Pryer’s [18] NVFEM
and completed an implementation of the four benchmark problems using Intrelab. This
was a necessary step to determine if Intrelab could adequately handle the NVFEM. We
demonstrated the desired results and convergence rates for the benchmark problems. Now
that the framework for using the NVFEM with Intrelab is established, we will use both
this method to solve the Monge-Ampère equation, with the ultimate goal of creating robust
moving mesh adaptive methods for solving singular nonlinear PDEs.
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in curved domains using the monge-ampére equation, SIAM Journal on Scientific Computing, 41
(2019), pp. A1331–A1356.

[10] Y. Dukler, W. Li, A. Lin, and G. Montufar, Wasserstein of Wasserstein loss for learning genera-
tive models, in Proceedings of the 36th International Conference on Machine Learning, K. Chaud-
huri and R. Salakhutdinov, eds., vol. 97 of Proceedings of Machine Learning Research, Long Beach,
California, USA, 09–15 Jun 2019, PMLR, pp. 1716–1725.



98 Nonvariational FEM for Elliptic PDEs

[11] B. E. Engquist and Y. Yang, Seismic imaging and optimal transport., 2018.
[12] X. Feng and M. Neilan, Analysis of galerkin methods for the fully nonlinear monge-ampére equation,
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PARAMETER SENSITIVITY ANALYSIS OF THE SPARTEN HIGH
PERFORMANCE SPARSE TENSOR DECOMPOSITION SOFTWARE

JEREMY M. MYERS∗, DANIEL M. DUNLAVY† , KEITA TERANISHI‡ , AND D.S. HOLLMAN§

Abstract. Tensor decomposition models play an increasingly important role in modern data science
applications. One problem of particular interest is fitting a low-rank Canonical Polyadic (CP) tensor de-
composition model when the tensor has sparse structure and the tensor elements are nonnegative count
data. SparTen is a high-performance C++ library which computes a low-rank decomposition using different
solvers: a first-order quasi-Newton or a second-order damped Newton method, along with the appropriate
choice of runtime parameters. Since default parameters in SparTen are tuned to experimental results in
prior published work on a single real-world dataset conducted using MATLAB implementations of these
methods, it remains unclear if the parameter defaults in SparTen are appropriate for general tensor data.
Furthermore, it is unknown how sensitive algorithm convergence is to changes in the input parameter values.
This report addresses these unresolved issues with large-scale experimentation on three benchmark tensor
data sets. Experiments were conducted on several different CPU architectures and replicated with many
initial states to establish generalized profiles of algorithm convergence behavior.

1. Introduction. The Canonical Polyadic (CP) tensor decomposition model has gar-
nered attention as a tool for extracting useful information from high dimensional data across
a wide range of applications [10, 4, 9, 2, 8].

Recently, Hansen et al. developed two highly-parallelizable Newton-based methods for
low-rank tensor factorizations on Poisson count data in [7], one a first-order quasi-Newton
method (PQNR) and another a second-order damped Newton method (PDNR). These meth-
ods reformulate the CP Poisson tensor factorization optimization problem described in [3]
into many independent subproblems that can be solved in parallel. They were first imple-
mented in MATLAB Tensor Toolbox [1] as the function cp_apr, referring to this approach
as computing a CP decomposition using Alternating Poisson Regression (i.e., CP-APR).
These methods fit a reduced-rank CP model to count data, assuming a Poisson error distri-
bution. PDNR and PQNR are implemented in SparTen,1 a high-performance C++ library
of CP-APR solvers for sparse tensors. SparTen improves on the MATLAB implementation
to provide efficient execution for large, sparse tensor decompositions, exploiting the Kokkos
hardware abstraction library [6] to harness parallelism on diverse HPC platforms, including
x86-multicore, ARM, and GPU computer architectures.

SparTen contains many algorithmic parameters for controlling the optimization subrou-
tines comprising PDNR and PQNR. To date, only anecdotal evidence exists for how best
to tune the algorithms. Parameter defaults in SparTen were chosen according to previous
results using the MATLAB implementations described by Hansen et al. [7]. However, their
analysis was limited to a single real-world dataset, and thus may not be optimal for comput-
ing decompositions of more general tensor data. Furthermore, it is unknown how the initial
guess to a solution affects convergence, since SparTen methods may converge slowly—or
worse, stagnate—on real data if the initial state is far from a solution. And, lastly, the
average impact of input parameters on algorithm convergence is unclear.

To address these unknowns, we present the results of numerical experiments to assess
the sensitivity of software parameters on algorithm convergence for a range of values with
benchmark tensor problems. Every experiment was replicated with 30 randomly chosen

∗College of William and Mary, jmmyers01@email.wm.edu
†Sandia National Laboratories, dmdunla@sandia.gov
‡Sandia National Laboratories, knteran@sandia.gov
§Sandia National Laboratories, dshollm@sandia.gov
1SparTen is a portmanteau word derived from Sparse and Tensor. The SparTen code is available at

http://gitlab.com/tensors/sparten.
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initial guesses on three diverse computer architectures to aid statistical interpretation. With
our results, we (1) provide new results that offer a realistic picture of algorithm convergence
under reasonable resource constraints, (2) establish practical bounds on parameters such
that, if set at or beyond these values, convergence is unlikely, and (3) identify areas of
performance degradation and convergence toward qualitatively different results owing to
parameter sensitivities.

We limited our study to multicore CPU architectures only, using OpenMP [5] to manage
the parallel computations across threads/cores. Although SparTen, through Kokkos, can
leverage other execution backends (e.g., NVIDIA’s CUDA framework for GPU computa-
tion), we focus solely on diversity in CPU architectures in this work.

This paper is structured as follows. Section 2 summarizes basic tensor notation and
details. Section 3 describes the hardware environment, test data, and experimental design
of the sensitivity analysis. Section 4 provides detailed results of the sensitivity analyses.
Section 5 offers concluding remarks and lays out future work.

2. Background. We briefly describe below the problem we are addressing in this
report; for a detailed description of CP decomposition algorithms implemented in SparTen,
refer to the descriptions in Hansen et al. [7].

An N -way data tensor X has dimension sizes I1 × I2 × · · · × IN . We wish to fit a
reduced-dimension tensor model, M, to X. The R-component Canonical Polyadic (CP)
decomposition is given as follows:

X ≈M = Jλ; A(1), . . . ,A(N)K =

R∑

r=1

λra
(1)
r ◦ . . . ◦ a(N)

r , (2.1)

where λ = [λ1, . . . , λR] is a scaling vector, a
(n)
r represents the r-th column of the factor

matrix A(n) of size In × R, and ◦ is the vector outer product. We refer to the operator
J·K as a Kruskal operator, and the tensor M, with its specific multilinear model form, as a
Kruskal tensor in (2.1). See [10] for more details regarding these definitions.

SparTen addresses the special case when the elements of X are nonnegative counts.
Assuming the entries in X follow a Poisson distribution with multilinear parameters, the
low-rank CP decomposition in (2.1) can be computed using the CP-APR methods, PDNR
and PQNR, introduced by Hansen et al. [7].

3. Methods. In this section, we describe the hardware platforms, data, and SparTen
algorithm parameters used in our experiments.

3.1. Hardware Platforms. We used diverse CPU architectures to perform our ex-
periments, with hardware and compiler specifications detailed in Table 3.1. Intel 1–4 are
production clusters with hundreds to thousands of nodes, whereas ARM and IBM clusters
are advanced architecture research testbeds with tens of nodes each. We employed the
maximum number of OpenMP threads available per node from each platform to maximize
throughput and configured the maximum wall-clock limit as 12:00 hours for all experiments.
Although all parallelism was solely across threads on a single node, we took advantage of
the large number of nodes on each cluster to enable the large number of experiments. Thus,
our analyses do not consider runtime. The latest GNU compiler available to each cluster,
gcc, was used, with -O3 optimization and Kokkos architecture-specific flags enabled.

3.2. Data. We experimented using sparse tensors of count data from the FROSTT
collection [12]. Specifically, we chose the three datasets listed in Table 3.2 to account for
size, dimensionality, and density (i.e., the ratio of nonzero entries to the total number of
elements in the tensor):
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Table 3.1: Hardware characteristics and software environment of the clusters in this paper.
Threads and RAM (GB) are per node.

Arch Processor Threads RAM (GB) GCC

ARM ThunderX2 256 255 7.2.0
IBM Newell Power9 80 319 7.2.0
Intel 1 Sandy Bridge 16 64 8.2.1
Intel 2 Broadwell 72 128 8.2.1
Intel 3 Sandy Bridge 16 64 8.2.1
Intel 4 Sandy Bridge 32 64 8.2.1

1. Chicago Crime Community is a 4th-order tensor of crime reports in the city of
Chicago spanning nearly 17 years. The four modes represent day × hour × com-
munity × crime-type and the values are counts.

2. LBNL-Network is a 5th-order tensor of anonymized network traffic at Lawrence
Berkeley National Laboratory. The five modes represent sender-IP × sender-port
× destination-IP × destination-port × time and the values are total packet length
per timestep.

3. NELL-2 is 3rd-order benchmark tensor that gives a snapshot of the NELL: Never-
Ending Language Learning relational database. The three modes represent entity
× relation × entity relationships.

Throughout the discussion below, we refer to the data using the short names listed in the
table.

Table 3.2: Sparse tensor datasets from the FROSTT collection.

FROSTT Name Dimensions Density
(short name)

chicago-crime-comm (chicago) (6186, 24, 77, 32) 1.5× 10−02

lbnl-network (lbnl) (1605, 4198, 1631, 4209, 868131) 4.2× 10−14

nell-2 (nell) (12092, 9184, 28818) 2.4× 10−05

3.3. Software Parameter Definitions & Experimental Ranges. PQNR and PDNR
are composed of standard techniques in the numerical optimization literature. Specifically,
for each tensor mode, the Newton optimization computes the gradient and Hessian matrix.
Then, the inverse Hessian is approximated to compute a search direction and an Armijo
backtracking line search is used to compute the Newton step. How the inverse Hessian is
approximated differentiates PDNR and PQNR. PDNR shifts the eigenvalues by a damping
factor µ to guarantee the Hessian matrix is semi-positive definite, and solves the resulting
linear system exactly. PQNR approximates the inverse Hessian directly with a limited-
memory BFGS (L-BFGS) approach, computed with a small number of update pairs. Since
the algorithm parameters analyzed here are those presented in several equations and algo-
rithms in [7], we defer to that paper for specific details.

A brief description of each software parameter is given below. We note that the stabil-
ity parameters used to safeguard against numerical errors—e.g., offset tolerances to avoid
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divide-by-zero floating point errors—do not appear in the corresponding Matlab Tensor
Toolbox method cp_apr.

3.3.1. Parameter Descriptions.
• max outer iterations: Maximum number of outer iterations to perform (Al-

gorithm 1, Steps 2-9 in [7]).
• max inner iterations: Maximum number of inner iterations to perform (Kmax

in Algorithms 3 and 4 in [7]).
• max backtrack steps: Maximum number of backtracking steps in line search

(maximum allowable value of t used in Equation (17) in [7]).
• min step length: Tolerance for nonzero line search step length (smallest allow-

able value of β in Equation (17) in [7]).
• step reduction factor: Factor to reduce line search step size between itera-

tions (βt+1/βt in Equation (17) in [7]).
• suff decrease tolerance: Tolerance to ensure the next iterate decreases the

objective function (σ in Equation (17) in [7]).
• mu initial: Initial value of damping parameter (µ0 in Algorithm 3 in [7]).
• damping increase factor: Scalar value to increase damping parameter in next

iterate (Equation (16) in [7]).
• damping decrease factor: Scalar value to decrease damping parameter in next

iterate (Equation (16) in [7]).
• damping increase tolerance: Tolerance to increase the damping parameter

in Equation (16) in [7]. If the search direction increases the objective function and
the ratio of actual reduction and predicted reduction in objective function (ρ in
Equation (15) in [7]) is less than damping increase tolerance, the damping
parameter µk will be increased for the next iteration.

• damping decrease tolerance: Tolerance to decrease the damping parameter
in Equation (16) in [7]. Conversely, if the search direction decreases the objective
function and the ratio of actual reduction to predicted reduction (ρ in Equation (15)
in [7]) is greater than damping decrease tolerance, the damping parameter
µk will be decreased for the next iteration.

• size LBFGS: Number of recent limited-BFGS (L-BFGS)-update pairs to use in
estimating the current Hessian (M in Equation (18) in [7]).

• eps div zero grad: Safeguard against divide-by-zero in gradient and Hessian
calculations.

• log zero safeguard: Tolerance to avoid computing log(0) in objective function
calculations.

The default value in SparTen of each parameter described above and the experimental
ranges tested in these experiments are given in Table 3.3.

3.4. Experiments. An individual experiment is a job j on platformm solving a PDNR
or PQNR row subproblem for dataset d with SparTen solver s, parameter p, parameter value
v, and random initialization r; all remaining software parameters are fixed at the default
values listed in Table 3.3. Certain experiments denoted with an asterisk∗ were run only
on Intel hardware due to limited resources associated with the other architectures; this
accounts for the larger number of experiments reported for these platforms. We conducted
tests on these values to provide better resolution of the impact of the parameter where
nearby values—i.e., on the bounds of the test range—contained uncertainty in the results.
Furthermore, we split up the experiments across the Intel platforms by parameter, running
the full set of experiments across all parameter values and all random initializations on
a single platform. The superscripts denoted for each parameter in the table denote the
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Table 3.3: SparTen software parameter descriptions and values used in our experiments.

Parameter Default Values Used in Experiments

max outer iterations1 10000 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
max inner iterations1 20 20, 40, 80, 160
max backtrack steps2 10 1∗, 2, 4, 8, 10, 12∗, 16
min step size2 10−7 10−1∗, 10−3, 10−7, 10−15∗

step reduction factor2 0.5 0.1, 0.3∗, 0.5, 0.7∗, 0.9
suff decrease tol2 10−4 10−2, 10−4, 10−8∗, 10−12∗

mu initial3 10−5 10−2, 10−5, 10−8

damping increase factor3† 3.5 1.5, 2.5∗, 3.5, 4.5∗, 5.5
damping decrease factor3† 2/7 0.1, 2/7, 0.3∗, 0.5, 0.7∗, 0.9
damping increase tol3† 0.25 0.1, 0.25, 0.495
damping decrease tol3† 0.75 0.505, 0.75, 0.9
size LBFGS3‡ 3 1, 2, 3, 4, 5, 10, 15, 20
eps div zero grad4 10−10 10−5, 10−8∗, 10−10, 10−12∗, 10−15

log zero safeguard4 10−16 10−4∗, 10−8, 10−12∗, 10−16, 10−24∗, 10−32

eps active set4 10−3† 10−1, 10−3, 10−5∗,10−8∗

10−8‡ 10−1, 10−3, 10−5∗,10−8∗

†PDNR-specific; ‡PQNR-specific; 1–4Intel platform used for experiments; ∗values evaluated on Intel

platform only

Intel platform number specified in Table 3.1. Since we report only the number of function
evaluations and outer iterations in our results, we expect that running our experiments in
this way has produced valid results.

In all experiments, we fit a 5-component CP decomposition using a tolerance of 10−4

(i.e., the value of τ in Equation (20) in [7], the violation of the Karush-Kuhn-Tucker (KKT)
conditions, used as the stopping criterion for the methods we explore here). Computation
of a CP decomposition using PDNR or PQNR in SparTen requires an initial guess of the
model parameters—i.e., initial values for M in (2.1)—drawn from a uniform distribution in
the range [0, 1]. As such, all experiments were replicated using 30 random initializations.
All computations used double precision floating point arithmetic. We report results on the
amount of computation required for convergence (i.e., the number of evaluations of the
negative log likelihood objective function, f(M), defined in Equation (4) of [7]) and the
quality of the solution (i.e., the value of the negative log likelihood objective function). As
each of our experiments consists of 30 replicates (i.e., 30 random initializations) across three
CPU architectures, we report sample means and 95% confidence intervals (as defined in [11])
when presenting statistical trends in the results.

4. Results. In this section we analyze the results of the parameter sensitivity exper-
iments and describe the statistical relationships between the convergence properties of the
PDNR and PQNR methods and their input parameters.

In total, 21,960 unique experiments were planned, accounting for running PDNR and
PQNR with random initializations across all parameter value ranges on the various hardware
architectures described in Sections 3.1 and 3.3. An experiment converged if the final KKT
violation is less than the value of τ = 10−4; an experiment reached maximum iterations if the
number of outer iterations exceeded the maximum limit (i.e., max outer iterations)
and did not converge; an experiment was canceled if it exceeded the wall-clock limit (i.e.,
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SparTen neither converged to a solution nor reached maximum number of outer iterations
within 12 hours); and an experiment was missing if it did not run due to a failure of the
system to launch the experiment or other system issue. Of the planned experiments, we
collected data from 16,139 experiments.

Table 4.1 presents the number of experiments planned (plan.) as defined above and
the number of planned experiments where data was collected (i.e., planned minus miss-
ing). For those collected (coll.), the table shows the percentage of experiments that were
canceled (canc.), converged (conv.), or exceeded the maximum iterations (max. iter.). We
note that the most complete set of experiment results were obtained on the Intel platforms.
Although there are many missing experiment results (miss.) for the IBM and ARM plat-
forms, we attempt to identify patterns in the data we collected if there is strong evidence to
support our claims. We note that a few parameters (eps active set, min step size,
suff decrease tol, damping increase tol, damping decrease tol) showed no
statistically significant differences across the range of input values used in the experiments.
We conjecture that we did not find values where the parameters display sensitivities in the
chosen tensor problems, thus it remains unclear if this behavior holds in general.

4.1. General Convergence Results on Real-World Data. As discussed in Sec-
tion 1, applying PDNR and PQNR to real-world data has been explored previously in the
literature only for a single problem. From Table 4.1, we observed that PQNR is canceled
more than PDNR in the allotted time across datasets and CPU platforms. This confirms
our intuition, since it is a classical result in iterative methods that damped Newton methods
converge quadratically, in comparison to quasi-Newton methods, which converge superlin-
early. Specifically, PQNR calls the objective function 2.7 times more than PDNR on average

Table 4.1: Experiments run on the different datasets and hardware platforms.

CPU Solver Data Plan. Collect. Canc. Conv. Max. Iter. Miss.

ARM

PDNR
chicago 1110 1110 4.8% 82.2% 13.0% 0.0%
lbnl 1110 1110 10.5% 76.5% 13.0% 0.0%
nell 1110 390 5.4% 39.2% 55.4% 64.9%

PQNR
chicago 990 281 0.0% 55.5% 44.5 71.6%
lbnl 990 237 0.0% 0.0% 100.0% 76.1%
nell 990 390 23.3% 0.3% 76.4 60.6%

IBM

PDNR
chicago 1110 855 5.4% 77.8% 16.8% 23.0%
lbnl 1110 692 11.3% 73.3% 15.4% 37.7%
nell 1110 424 51.2% 12.0% 36.8% 61.8%

PQNR
chicago 990 676 10.2% 76.3% 13.5% 31.7%
lbnl 990 293 61.8% 0.0% 38.2% 70.4%
nell 990 481 31.0% 6.6% 62.4% 51.4%

Intel

PDNR
chicago 1680 1673 5.0% 86.4% 8.6% 0.4%
lbnl 1680 1663 11.0% 80.6% 8.4% 1.0%
nell 1680 1643 44.7% 42.2% 13.1% 2.2%

PQNR
chicago 1440 1434 12.1% 78.6% 9.3% 0.4%
lbnl 1440 1363 78.0% 0.0% 22.0% 5.3%
nell 1440 1424 68.8% 10.1% 21.1% 1.1%
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Fig. 4.1: Total function evaluations computed solving chicago on Intel architecture. Top:
PDNR, Bottom: PQNR.

on the chicago data and fails to converge for any experiment on lbnl data across all hardware
platforms. By contrast, PDNR converges in 86% of lbnl experiments across platforms when
only 32 outer iterations are allowed.

4.2. Sensitivity of Convergence and Solution Behavior. There are certain ranges
of parameter values that lead to good or bad convergence behaviors in general. This is illus-
trated in Figures 4.1–4.3, where parameter values and random initializations are depicted
across the horizontal and vertical axes, respectively. These heatmaps display total objective
function evaluations, where solid columns of a single shade indicate the same convergence
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Fig. 4.2: Total function evaluations solving lbnl on Intel architecture. Top: PDNR, Bottom:
PQNR.

behavior across all 30 random initializations. Green shades are consistent with converged
experiments. Vertical bands not shaded green identify values that may impact algorithm
performance, due either to iteration constraints (blue hues) or excessive computations cor-
responding to slow convergence or stagnation (red hues). Hatches denote non-converging
exit status. Grey represents missing data, i.e., experiments that were planned but never
conducted due to resource limitations—e.g., dequeued by the cluster administrator—or a
system failure. Nearly solid column lines of the same shade indicate similar behavior, but
also that there is some sensitivity of those parameter values to the initial starting point of
the iterative methods.
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Fig. 4.3: Total function evaluations solving nell on Intel architecture. Top: PDNR, Bottom:
PQNR.

In several cases, there is a tendency to time-out at one or both bounds of the test
ranges for both solvers. The behavior of numerical stability parameters eps div zero -
grad and log zero safeguard was consistent across combinations of solver, data, and
CPU hardware. When eps div zero grad is large, gradient directions that do not lead to
objective function improvements may be scaled the same as gradient directions that do lead
to such improvements. Furthermore, the corresponding eigenvalues of the Hessian matrix
are amplified and Hessian information may be lost when determining the next iterate. For
example, PDNR loses Hessian information as eps div zero grad increases on chicago
data; PDNR rarely converges and PQNR never converges when this parameter is relatively
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mu initial is large (PDNR, lbnl).
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large—i.e. 10−5. Moreover, both algorithms are sensitive to the parameter’s lower bound,
as small values may be insufficient to avoid an ill-conditioned Hessian matrix. In either case,
additional iterations follow to correct errors incurred by eps div zero grad values, large
and small.

PDNR typically does not converge for large log zero safeguard values on large
tensor problems. This parameter sets a nonzero offset in logarithm calculations to avoid
explicitly computing log(0). High precision in logarithm computations tends to ensure
the objective function is minimized accurately. When the value is too large, the calculated
logarithm may be too small, and more backtracking steps are required to sufficiently decrease
the objective function in the line search routine, making time-outs more likely. On the other
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hand, the effect of the parameter on convergence is indistinguishable for values smaller than
10−8 across all experiments.

The effect when convergence behavior is similar for values set within sensitivity con-
straints is common among several algorithm parameters corresponding to the different
numerical optimization subroutines that comprise PDNR and PQNR. Two examples are
damping increase factor and damping decrease factor, which control updates
to the PDNR Hessian matrix damping parameter µ. SparTen rarely converges when the
former is set too low (1.5); the likely effect is that the updated damping factor is insuf-
ficient to guarantee a well-conditioned Hessian and too many unimportant directions are
considered when computing the search direction. Above the 1.5 bound, the cost in objective
function calls does not change significantly. The PQNR-specific parameter, size LBFGS,
behaves similarly; the only observable difference occurs when the update size is 1, using
only the current iterate in the BFGS update.

Other parameters show meaningful differences in cost, defined in terms of the number
of function evaluations required before convergence is achieved, when varied. Hansen et
al. predict in [7] that when the damping parameter µ is set too large, a loss of Hessian
information follows, which impacts convergence. For example, when mu initial is large,
the computational cost grows dramatically and time-outs become more likely, since the initial
step length will at first be very small in every outer iteration and useful Hessian information
is discarded in early stages of the inner loop solves. Convergence is most likely for a large,
but not too-large, value, i.e., mu initial = 10−5. Cost grows 177.2% on lbnl and nearly
doubles (+92.2%) on chicago as mu initial grows from 10−5 to 10−2. It is important to
note in the former case that this cost is skewed by one experiment that converged after nearly
42,000 outer iterations, in comparison to 1,300 for the other parameter values on average,
illustrated in Figure 4.4, where the x-axis is truncated to highlight the differences in total
cost. Smaller values (i.e, 10−8) seem to perform better for chicago, the smallest, densest
problem and larger values (i.e., 10−5) tend to perform better for large, sparse problems.

Allowing many backtracking steps during the line search may cause PDNR to waste
effort; however, PQNR appears to perform better, in general, with more steps. PDNR is
sensitive to the number of backtracking steps on chicago: average work performed is less
when the maximum number of allowed steps is large and more work is performed when the
number of steps is small. On lbnl—the sparsest tensor problem considered—PDNR performs
better with fewer backtracking steps (see Figure 4.5). The average cost incurred by PQNR
decreases as max backtrack steps increases.

The line search parameter step reduction factor is used to reduce the line search
step size between iterations. On a large, sparse tensor problem, increasing this parameter
may accelerate convergence. On the other hand, a small value makes convergence less
certain. Figure 4.6 illustrates this behavior on the lbnl data: the average total cost decreased
by 77% as step reduction factor increased from 0.1 to 0.5 (SparTen default) and
decreased another 28% from 0.5 to 0.9. On nell data, PQNR only converged for large values
(0.7, 0.9).

Parameter sensitivities affect not only convergence behavior, but may also produce
qualitatively different results. Figure 4.7 illustrates the effect where large eps div zero -
grad—and consequently, small step length—minimizes calls to the objective function and
results in minimal objective function value. Most striking is that larger eps div zero -
grad decreases the objective function more than an order of magnitude. This result was
collected from 79 of 90 planned PDNR experiments on lbnl, and thus we consider this
interesting effect worthy of further investigation.
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5. Conclusions. Using results from more than 16,000 numerical experiments on sev-
eral hardware platforms, we presented experimental results that expand our understanding
of average PDNR and PQNR convergence on real-world tensor problems. We have shown
that when using PQNR to compute large tensor decompositions convergence is less-likely
under reasonable resource constraints. We have shown that some software parameters are
sensitive to bounds on values. Further, we showed that varying several parameters can
dramatically impact algorithm performance, and in some cases, may produce qualitatively
different results.

Future work may address the issue of stagnation in Newton optimization methods for
CP decompositions. We showed examples where the solver converged to a solution slowly
but within the allotted time of 12 hours. For those experiments that timed out, it is
unknown whether SparTen would eventually converge to a solution or stagnate without
making progress. We anticipate that stagnation could be determined if the objective function
values converge to a statistical steady state without satisfying the convergence criterion.
Future development of SparTen may include dynamic updates to algorithm parameters
based on local convergence information. Lastly, future experiments could explore coupled
sensitivities among algorithm parameters, as this work was limited to single parameter,
univariate analyses.
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THE TEMPERED FRACTIONAL LAPLACIAN AS
A SPECIAL CASE OF THE NONLOCAL LAPLACE OPERATOR

HAYLEY A. OLSON† , MAMIKON GULIAN‡ , AND MARTA D’ELIA§

Abstract. Tempered fractional operators provide an improved predictive capability for modeling
anomalous effects that cannot be captured by standard partial differential equations. These effects include
subdiffusion and superdiffusion, which often occur in, e.g., geoscience and hydrology. Tempered operators
can be used in such models of heavy-tailed behavior while circumventing consequences of standard frac-
tional models, such as divergent moments. In the first part of this work, we investigate the relationship
between tempered and truncated fractional operators and the unified nonlocal diffusion operator, building
upon the recently developed unified nonlocal calculus. In the second part of this work, with the purpose of
finding a computationally cheap alternative to tempered fractional operators, we investigate the relationship
between the (computationally expensive) tempered fractional Laplacian and the (computationally cheaper)
truncated fractional Laplacian. Our main result shows the equivalence between truncated and tempered
fractional energies and represents the first step towards the approximation of expensive fractional models
with cheaper, but equivalent, alternatives.

1. Introduction. Fractional models can capture anomalous effects that standard par-
tial differential equations (PDEs) fail to describe. In particular, they can model superdif-
fusion and subdiffusion processes; i.e. processes for which the mean square displacement is
proportional to time to a fractional power, instead of being linear with respect to time, as is
the case for PDEs. These operators have been used for decades in subsurface diffusion and
transport, where the anomalous behavior is caused by heterogeneities in materials or media
[1, 5, 6, 12, 11], and have also found application in turbulence [7, 8, 10] and, more recently,
in machine-learning algorithms [13].

Fractional operators, such as the fractional Laplacian, are integral operators acting on
the whole space and, as such, feature infinite interactions between points or domains. This
fact allows one to model long range forces and reduces the regularity requirements on the
solution. However, despite their improved predictive capabilities, fractional models come
with a high computational cost due to the infinite range of interactions and the singularities
in their kernels. In this work we focus on the former matter and investigate an equivalent
alternative to tempered fractional operators that is computationally cheaper. The alter-
native of choice is truncated fractional operators; i.e. fractional operators whose range of
interaction is limited to a ball of finite radius.

In the first part of this work we investigate the relationship between tempered and
truncated fractional operators and the unified nonlocal Laplacian operator, introduced in
[3]. Specifically, we investigate the composition of tempered and truncated fractional diver-
gence and gradient and compare it with the tempered and truncated fractional Laplacian
operators. One of the contributions of this work is to show that, while for tempered case
the composition yields a tempered fractional Laplacian, the same statement does not hold
in the truncated case.

In the second part of the paper we focus on the equivalence between tempered and
truncated fractional operators; our second main contribution is an equivalence result for
the tempered and truncated energies. In particular, we show that for a given tempered
parameter, the associated nonlocal energy norm is equivalent to the truncated energy norm
for every truncation parameter.

This paper is organized as follows. In Section 2 we report relevant definitions and
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results that will be used throughout the paper. Section 3 introduces the tempered fractional
Laplacian as a special case of a general nonlocal operator by using the nonlocal equivalence
kernel from [3]. This is followed by Section 4 where we examine the same problem for the
truncated fractional Laplacian. In Section 5, we investigate the relationship between the
tempered and truncated fractional operators and prove the equivalence of the corresponding
energies. Finally, in Section 6, we summarize our theoretical findings.

2. Notation and previous work. In this section we recall the definitions of un-
weighted and weighted nonlocal operators and the main result that will be useful throughout
the paper.

We let Ω ∈ Rn be an open bounded domain and define the corresponding interaction
domain as

ΩI = {y ∈ Rn\Ω such that x interacts with y for some x ∈ Ω}
= {y ∈ Rn\Ω : |x− y| ≤ δ for some x ∈ Ω},

where δ > 0 is the so-called interaction radius or horizon. We point out that for fractional
operators, including tempered fractional operators, δ = ∞, so that ΩI = Rn \ Ω (see the
following section for a precise definition). Let v : Rn × Rn → Rn, u : Rn → R, and let
α : Rn×Rn → Rn be an antisymmetric function such that supp(α) = Bδ(x), for all x ∈ Rn,
where Bδ(x) is the Euclidean ball of radius δ centered in x. Then, for x ∈ Ω the nonlocal
unweighted divergence and gradient are defined as

Dv(x) :=

∫

Ω∪ΩI

(v(x,y) + v(y,x)) ·α(x,y)dy (2.1)

Gu(x,y) := (u(y)− u(x))α(x,y). (2.2)

The nonlocal unweighted Laplacian is obtained by composing the divergence and gradient
operators, i.e. for x ∈ Ω and γ = α ·α the nonlocal unweighted Laplacian is defined as

L = DGu(x) = 2

∫

Ω∪ΩI

(u(y)− u(x))γ(x,y)dy.

Next, we let ω : Rn × Rn → R be a symmetric two-point weight function; the weighted
nonlocal divergence and gradient are defined as

Dωv(x) := D(ω(x,y)v(x)) =

∫

Ω∪ΩI

(ω(x,y)v(x) + ω(y,x)v(y)) ·α(x,y)dy (2.3)

Gωu(x) :=

∫

Ω∪ΩI

Gu(x,y)ω(x,y)dy =

∫

Ω∪ΩI

(u(y)− u(x))α(x,y)ω(x,y)dy. (2.4)

As above, for x ∈ Ω, by composing the weighted nonlocal divergence and gradient we obtain
the nonlocal weighted Laplacian

Lωu(x) = DωGωu(x)

=

∫

Ω∪ΩI

[∫

Ω∪ΩI

(u(z)− u(x))α(x, z)ω(x, z)dz

+

∫

Ω∪ΩI

(u(z)− u(y))α(y, z)ω(y, z)dz

]
·α(x,y)ω(x,y)dy.
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Theorem 4.1 in [3] shows that, given ω and α, it is possible to define the so-called
equivalence kernel, γeq, for which the composition of weighted divergence and gradient equals
the unweighted nonlocal Laplacian with kernel γeq. We report such result below.

Theorem 2.1. Let Dω and Gω be the operators associated with the symmetric weight
function ω and the anti-symmetric function α. For the equivalence kernel γeq defined by

2γeq(x,y) =

∫

Ω∪ΩI

[α(x,y)ω(x,y) ·α(x, z)ω(x, z)

+α(z,y)ω(z,y) ·α(x,y)ω(x,y)

+α(z,y)ω(z,y) ·α(x, z)ω(x, z)]dz,

(2.5)

the weighted Laplacian Lω = DωGω and unweighted Laplacian operator L with kernel γeq

are equivalent, i.e. L = Lω.
3. Tempered Fractional Laplacian as a Special Case of Nonlocal Operators.

In this section we first show that for a specific choice of ω and α the equivalence kernel is
equivalent to the tempered fractional Laplacian kernel and then provide numerical illustra-
tions that confirm the theoretical result. Throughout this section, we assume u ∈ Hs(Rn).

3.1. Consistency of tempered fractional Laplacian. The tempered fractional Lapla-
cian, introduced in [9], is defined by

Ltemu(x) :=

∫

Ω∪ΩI

(u(y)− u(x))
e−λ|x−y|

|x− y|n+2s
dy (3.1)

where λ > 0 and 0 < s < 1 and where Ω ∪ ΩI = Rn. Note that we do not consider a
scaling constant (which usually appears in the literature for normalization purposes) as it
is not relevant for the results reported in this paper. Also, while the integral above should
be considered in a principal value sense, we do not explicitly write it in the definition of the
operator, and implicitly assume it. Paper [3], shows that for

ω(x,y) = |y − x|φ(|y − x|) with φ(|y − x|) =
e−λ|x−y|

|y − x|n+1+s
(3.2)

α(x,y) =
y − x

|y − x|

the equivalence kernel is given by

γeq(x,y) =
F (n, s, λ, |x− y|)
|x− y|n+2s

(3.3)

for

F (n, s, λ, |x− y|) =

∫

Rn

e− z

|e− z|n+s+1
· z

|z|n+s+1
e−λ|x−y|(|e−z|+|z|)dz. (3.4)

In what follows, we make progress on the following conjecture, stated in [3] as Conjecture
4.1 for the special case of dimension n = 1.

Conjecture 3.1. For the function F defined above, there exist positive constants C
and C such that

Ce−λ|x−y| ≤ F (n, s, λ, |x− y|) ≤ Ce−λ|x−y|. (3.5)
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Below, Lemma 3.2 establishes the lower bound for n = 1. Lemma 3.3 then proves a
slightly weaker upper bound for the case n = 1, showing that the desired result holds for
any λ′ > λ. The latter lemma is shown using a linear approximation to the integrand in the
conjecture. By using the same strategy and performing a more accurate approximation, it
may be possible to prove the conjectured upper bound; we leave this to a future work.

Lemma 3.2. For the function F defined in (3.4), there exists a constant C such that
Ce−λ|x−y| ≤ F (n, s, λ, |x− y|). In particular,

C =

∫ ∞

−∞

1− z
|1− z|n+s+1

· z

|z|n+s+1
dz.

Proof. For n = 1, we analyze

F (n, s, λ, |x− y|) =

∫ ∞

−∞

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|(|1−z|+|z|)dz.

Note that that the non-tempered integral

∫ ∞

−∞

1− z
|1− z|n+s+1

· z

|z|n+s+1
dz

is a positive number [3]. The integrand of F (n, s, λ, |x − y|) is nonnegative for 0 ≤ z ≤ 1

Fig. 3.1: Left: Plot of the function f(z) = |z − 1| + |z|. Right: Plot of the exponential
function g(z) = e−λ|x−y|f(z) for λ|x− y| = 1.

and negative elsewhere. We have

|1− z|+ |z| =





1− 2z, z < 0

1, 0 ≤ z ≤ 1

2z − 1, z > 1.

Therefore,

e−λ|x−y|(|1−z|+|z|) =





e−λ|x−y|(1−2z) ≤ e−λ|x−y|, z < 0

e−λ|x−y|, 0 ≤ z ≤ 1

e−λ|x−y|(2z−1) ≤ e−λ|x−y|, z > 1.

(3.6)



H.A. Olson and M. Gulian and M. D’Elia 115

The integrand of F (n, s, λ, |x− y|) for 0 ≤ z ≤ 1, where the integrand is nonnegative, is

e−λ|x−y|
∫ ∞

−∞

1− z
|1− z|n+s+1

· z

|z|n+s+1
dz.

Elsewhere, where the integrand is negative, the upper bounds on the exponential factor
provide lower bounds for the integrand in exactly the same from. Thus, we obtain the lower
bound

F (n, s, λ, |x− y|) ≥ e−λ|x−y|
∫ ∞

−∞

1− z
|1− z|n+s+1

· z

|z|n+s+1
dz = Ce−λ|x−y|.

Lemma 3.3. For the function F defined in (3.4), for any λ′ > λ there is a constant C
such that F (n, s, λ, |x− y|) ≤ Ce−λ′|x−y|.

Proof. We observe that the factor

1− z
|1− z|n+s+1

· z

|z|n+s+1
, (3.7)

in the integrand of (3.4) is negative if z < 0 or z > 1 and nonnegative otherwise, while the
remaining factor in the integrand is positive. Thus, lower bounds on the factor (3.6) of the
integrand for z < 0 and z > 1 yield upper bounds on the integral (3.4). We claim that

e−λ|x−y|(|1−z|+|z|) ≥
{
e−λ|x−y|(2|x− y|z + 1), z < 0,

e−λ|x−y|(2|x− y|(1− z) + 1), z > 1.
(3.8)

The second inequality follows from the first under the transformation z 7→ (1 − z), which
maps {z < 0} to {z > 1}. To prove the first inequality, we denote

G(z) = e−λ|x−y|(|1−z|+|z|), (3.9)

and note that for z < 0,

G(z) = e−λ|x−y|(1−2z). (3.10)

Then

G′(z) = 2|x− y|e−λ|x−y|(1−2z), (3.11)

G′′(z) = 4|x− y|2e−λ|x−y|(1−2z). (3.12)

Thus G′(0) = 2|x − y|e−λ|x−y|, and G′′(z) > 0 for all z < 0. Since G(0) = e−λ|x−y|, it
follows that for z ≤ 0,

G(z) ≥ G′(0)z +G(0) (3.13)

≥ 2|x− y|e−λ|x−y|z + e−λ|x−y| (3.14)

≥ e−λ|x−y|(2|x− y|z + 1). (3.15)

This proves (3.8). Now define

a =
1

2|x− y| ≥ 0. (3.16)
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We have, for z ≤ −a,

e−λ|x−y|(2|x− y|z + 1) ≤ 0, (3.17)

while for z ≥ 1 + a,

e−λ|x−y|(2|x− y|(1− z) + 1) ≤ 0. (3.18)

Since e−λ|x−y|(|1−z|+|z|) > 0 for all z, we can replace (3.8) by

e−λ|x−y|(|1−z|+|z|) ≥





0, z ≤ −a,
e−λ|x−y|(2|x− y|z + 1), −a < z < 0,

e−λ|x−y|(2|x− y|(1− z) + 1), 1 < z < 1 + a,

0, 1 + a ≤ z.

(3.19)

From these inequalities and (3.4), we have

F (n, s, λ, |x− y|) ≤
∫ 0

−a

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|(2|x− y|z + 1)dz (3.20)

+

∫ 1

0

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|dz (3.21)

+

∫ 1+a

1

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|(2|x− y|(1− z) + 1)dz (3.22)

=

∫ 0

−a

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|2|x− y|zdz (3.23)

+

∫ 0

−a

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|dz (3.24)

+

∫ 1

0

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|dz (3.25)

+

∫ 1+a

1

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|dz (3.26)

+

∫ 1+a

1

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|2|x− y|(1− z)dz. (3.27)

The second, third, and fourth terms above combine to give

e−λ|x−y|
∫ 1+a

−a

1− z
|1− z|n+s+1

· z

|z|n+s+1
dz; (3.28)

the integral in this expression is convergent due to the convergence of the improper integral

∫ ∞

−∞

1− z
|1− z|n+s+1

· z

|z|n+s+1
dz (3.29)

proven in [3]. Denote the value of the integral by C, so that the combination (3.28) can be
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written as Ce−λ|x−y|. The first term (3.23) can be evaluated as

∫ 0

−a

1− z
|1− z|n+s+1

· z

|z|n+s+1
e−λ|x−y|2|x− y|zdz

= e−λ|x−y|2|x− y|
∫ 0

−a

1− z
(1− z)n+s+1

· |z|2
|z|n+s+1

dz

= e−λ|x−y|2|x− y|
∫ 0

−a
(1− z)−n−s|z|−n+(1−s)dz. (3.30)

This integral is improper due to the singularity at z = 0. Since we can assume that s < 1,
we have 0 < 1− s, so that near z ≈ 0 the integrand behaves as z−n+ε for ε > 0. Therefore,
the integral converges and we can write the above as

C ′|x− y|e−λ|x−y| (3.31)

for some constant C ′. The fifth term (3.27) can be shown to satisfy the same upper bound
using a similar calculation. Thus,

F (n, s, λ, |x− y|) ≤ Ce−λ|x−y| + C ′|x− y|e−λ|x−y|. (3.32)

In turn, by a continuity and compactness argument, for any λ′ there exists a constant C
such that

Ce−λ|x−y| + C ′|x− y|e−λ|x−y| ≤ Ce−λ′|x−y|. (3.33)

This completes the proof.

3.2. Numerical illustrations for the tempered fractional Laplacian. The ex-
pected behavior for F can be observed in the numerical illustrations presented in this section.
Specifically, by displaying values of F in a semilog plot we observe slopes of value −λ, which
indicates that F behaves like e−λ|x−y|.

In Figures 3.2, 3.3, and 3.4, we report such plots for a fixed value for s.

Fig. 3.2: Semilog plot of F vs. |x− y| with s=0.25 fixed and varying λ ∈ {0.5, 1, 1.5}.
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Fig. 3.3: Semilog plot of F vs. |x− y| with s=0.5 fixed and varying λ ∈ {0.5, 1, 1.5}.

Fig. 3.4: Semilog plot of F vs. |x− y| with s=0.75 fixed and varying λ ∈ {0.5, 1, 1.5}.

4. Truncated Fractional Laplacian as a Special Case of Nonlocal Operators.
In this section we proceed as in the previous section and show that, as opposed to tempered
operators, the composition of truncated divergence and gradient does not yield the truncated
fractional Laplacian. We also provide numerical illustrations that confirm the theoretical
result. Throughout this section, we assume u ∈ Hs(Rn).

4.1. Lack of equivalence kernel for the truncated fractional Laplacian. For
x ∈ Ω, we define the truncated fractional Laplacian as

Ltru(x) :=

∫

Ω∪ΩI

(u(y)− u(x))
1{|y − x| ≤ δ}
|x− y|n+2s

dy. (4.1)

Also in this case, we do not consider a scaling constant and we implicitly assume that the
integral above is intended in a principal value sense.

In [3] the authors show that for a specific choice of α and ω the composition of weighted
divergence and gradient yields the fractional Laplacian operator. In this section we consider
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the same functions and truncate the weight ω by multiplying it by the indicator function
1{|y − x| < δ}. It is appealing to conjecture that by truncating the weight function over
the ball of radius δ, the corresponding composition yields the truncated fractional Laplacian
defined above. However, the following result shows that such a conjecture is not true.

Theorem 4.1. For α and ω defined as

ω(x,y) = |y − x|φ(|y − x|) with φ(|y − x|) =
1{|y − x| < δ}
|y − x|n+1+s

(4.2)

α(x,y) =
y − x

|y − x| , (4.3)

the equivalence kernel γeq has the form

γeq =
1

|x− y|n+2s
F (|x− y|; δ) for

F (|x− y|; δ) =

∫

Rn

e− z

|e− z|n+s+1

z

|z|n+s+1
1

{
|e− z| ≤ δ

|x− y|

}
1

{
|z| ≤ δ

|x− y|

}
dz.

Proof. With the choices above, we have

γeq(x,y) =

∫

Rn

[α(x,y)ω(x,y) ·α(x, z)ω(x, z) +α(z,y)ω(z,y) ·α(x,y)ω(x,y)

+α(z,y)ω(z,y) ·α(x, z)ω(x, z)]dz

=

∫

Rn

[
y − x

|y − x|n+s+1
· z− x

|z− x|n+s+1
1{|y − x| ≤ δ}1{|z− x| ≤ δ}

+
y − z

|y − z|n+s+1
· y − x

|y − x|n+s+1
1{|y − z| ≤ δ}1{|y − x| ≤ δ}

+
y − z

|y − z|n+s+1
· z− x

|z− x|n+s+1
1{|y − z| ≤ δ}1{|z− x| ≤ δ}

]
dz.

We rewrite the expression above as the sum of three terms, γeq(x,y) = I + II + III for

I = 1{|y − x| ≤ δ} y − x

|y − x|n+s+1
·
∫

Rn

z− x

|z− x|n+s+1
1{|z− x| ≤ δ}dz,

II = 1{|y − x| ≤ δ} y − x

|y − x|n+s+1
·
∫

Rn

y − z

|y − z|n+s+1
1{|y − z| ≤ δ}dz,

III =

∫

Rn

y − z

|y − z|n+s+1
· z− x

|z− x|n+s+1
1{|y − z| ≤ δ}1{|z− x| ≤ δ}dz.

Note that I = II = 0 due to the rotational symmetry of the integrand. Thus, the truncated
kernel is given by

γeq =

∫

Rd

y − z

|y − z|n+s+1
· z− x

|z− x|n+s+1
1{|y − z| ≤ δ}1{|z− x| ≤ δ}dz.

We can apply the change of variables z 7→ z + x to obtain

γeq =

∫

Rd

(y − x)− z

|(y − x)− z|n+s+1
· z

|z|n+s+1
1{|(y − x)− z| ≤ δ}1{|z| ≤ δ}dz.
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This demonstrates that K only depends on (y − x). Next, we apply a rotation R and
compute

γeq (R(x− y)) =

∫

Rn

R(y − x)− z

|R(y − x)− z|n+s+1

· z

|z|n+s+1
1{|R(y − x)− z| ≤ δ}1{|z| ≤ δ}dz.

Let z = Rznew. Then dz = dznew, and

γeq (R(x− y)) =

∫

Rn

R(y − x)−Rznew

|R(y − x)−Rznew|n+s+1
· Rznew

|Rznew|n+s+1

1{|R(y − x)−Rz| ≤ δ}1{|Rz| ≤ δ}dznew

=

∫

Rn

R(y − x)−Rz

|R(y − x)−Rz|n+s+1
· Rz

|Rz|n+s+1

1{|R(y − x)−Rz| ≤ δ}1{|Rz| ≤ δ}dz

=

∫

Rn

R ((y − x)− z)

|R ((y − x)− z) |n+s+1
· Rz

|Rz|n+s+1

1{|R(y − x)−Rz| ≤ δ}1{|Rz| ≤ δ}dz

=

∫

Rn

1

|R ((y − x)− z) |n+s+1

1

|Rz|n+s+1
[R ((y − x)− z) · Rz]

1{|R(y − x− z)| ≤ δ}1{|Rz| ≤ δ}dz

=

∫

Rn

1

| ((y − x)− z) |n+s+1

1

|z|n+s+1
[((y − x)− z) · z]

1{|y − x− z| ≤ δ}1{|z| ≤ δ}dz

=

∫

Rn

(y − x)− z

|(y − x)− z|n+s+1
· z

|z|n+s+1

1{|y − x− z| ≤ δ}1{|z| ≤ δ}dz
= K(x− y).

This demonstrates that the truncated kernel is a rotationally invariant function of y − x;
that is, it is a function just of the scalar norm of y − x. Next, we study the scaling by
computing

γeq(c|x− y|; δ) =

∫

Rn

c(y − x)− z

|c(y − x)− z|n+s+1

· z

|z|n+s+1
1{|c(y − x)− z| ≤ δ}1{|z| ≤ δ}dz.
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for c > 0. Let z = cznew. Then dz = cndznew, and

γeq(c(x− y); δ) =

∫

Rn

c(y − x)− cznew

|c(y − x)− cznew|n+s+1
· cznew

|cznew|n+s+1

1{|c(y − x)− cznew| ≤ δ}1{|cznew| ≤ δ}cndznew

=

∫

Rn

c(y − x)− cz
|c(y − x)− cz|n+s+1

· cz

|cz|n+s+1

1{c|(y − x)− z| ≤ δ}1{c|z| ≤ δ}cndz

=
c

cn+s+1

c

cn+s+1
cn
∫

Rn

(y − x)− z

|(y − x)− z|n+s+1
· z

|z|n+s+1

1{c|(y − x)− z| ≤ δ}1{c|z| ≤ δ}dz

=
1

cn+2s

∫

Rn

(y − x)− z

|(y − x)− z|n+s+1
· z

|z|n+s+1

1

{
|(y − x)− z| ≤ δ

c

}
1

{
|z| ≤ δ

c

}
dz.

Then, we write

γeq(|x− y|; δ) = γeq

(
|x− y| x− y

|x− y| ; δ
)

= K (|x− y|e; ffi)

=
1

|x− y|n+2s

∫

Rn

e− z

|e− z|n+s+1

· z

|z|n+s+1
1

{
|e− z| ≤ ffi

|x− y|

}
1

{
|z| ≤ δ

|x− y|

}
dz

=
1

|x− y|n+2s
F (|x− y|; δ).

By analyzing the form of F , this theorem shows that the equivalence kernel for the
truncated fractional weight exhibits unbounded behavior when |x − y| = δ in addition to
when |x − y| = 0, which is not observed in the kernel of the truncated Laplacian. In the
next section we illustrate this result using numerical computations of the equivalence kernel
in the above theorem.

4.2. Numerical results for the truncated fractional Laplacian. In Figures 4.1
and 4.2 we report the functions F and K above; these plots confirm the singular behavior
at |x − y| = δ and confirm that the composition of truncated fractional divergence and
gradient is not consistent with the truncated fractional Laplacian.
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Fig. 4.1: Plot of F vs. |x − y| with s=0.25 fixed and varying δ ∈ {1, 5, 10}. Note the
singularities at |x− y| = δ.

Fig. 4.2: Plot of K vs. |x− y| with s=0.25 fixed and varying δ ∈ {1, 5, 10}. While all three
equivalence kernels exhibit singularities at |x−y| = 0 as expected, they are also singular at
the respective values of |x− y| = δ.

5. Equivalence of Tempered and Truncated Fractional Laplacians. In this sec-
tion we investigate the relationship between the truncated and tempered fractional Lapla-
cians. Our main goal is to find a viable, but equivalent, alternative to tempered fractional
operators, that, due to their infinite interaction range, are extremely computationally ex-
pensive. Specifically, we compare the tempered and truncated fractional energy norms and
show that given a tempered parameter λ, the associated energy is equivalent to a truncated
fractional energy for any truncation parameter δ.

Throughout this section we consider functions u ∈ Hs(Rn) such that u = 0 in Rn \ Ω
and we refer to this functional space as Hs

Ω(Rn). This assumption, though not necessary,
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simplifies the analysis. For a kernel γi, the nonlocal energy norm is defined as

Ei(u;µ) =

∫∫

(Ω∪ΩI)2
(u(x)− u(y))2γi(x,y, µ)dydx (5.1)

where µ is a parameter that determines the kernel. We recall that for the tempered and
truncated fractional Laplacian operators the kernel γi is defined as

γtem(x,y, λ) =
e−λ|x−y|

|x− y|n+2s
and γtr(x,y, δ) =

1{|x− y| < δ}
|x− y|n+2s

, (5.2)

respectively. We refer to the corresponding energy norms Etem(u;λ) and Etr(u; δ) as the
tempered and truncated energies. Furthermore, by definition of the interaction domain ΩI ,
for the tempered fractional Laplacian ΩI = Rn \ Ω, whereas for the truncated fractional
Laplacian ΩI = {y ∈ Rn \Ω : |x− y| ≤ δ, for some x ∈ Ω}.

In what follows, we show that there exist positive constants A and A such that, given
λ > 0,

AEtr(u; δ) ≤ Etem(u;λ) ≤ AEtr(u; δ), ∀u ∈ Hs
Ω(Rn), δ <∞. (5.3)

The following theorem provides an estimate for the left-hand side of the inequality above.
Theorem 5.1. For the nonlocal truncated and tempered energies, the left-hand side of

(5.3) holds with A = e−λδ.
Proof. Due to the positivity of the integrand,

Etr(u; δ) =

∫

Ω∪ΩI

∫

Ω∪ΩI

(u(x)− u(y))2γtr(x,y, δ)dydx

=

∫

Ω∪ΩI

∫

Ω∪ΩI

(u(x)− u(y))2χ{|x− y| < δ}
|x− y|n+2s

dydx

≤
∫

Rn

∫

Rn

(u(x)− u(y))2χ{|x− y| < δ}
|x− y|n+2s

dydx.

Note that for all x,y ∈ Rn,

eλδe−λ|x−y| ≥ χ{|x− y| < δ}.

Thus,

Etr(u; δ) ≤
∫

Rn

∫

Rn

(u(x)− u(y))2χ{|x− y| < δ}
|x− y|n+2s

dydx

≤
∫

Rn

∫

Rn

(u(x)− u(y))2 e
λδe−λ|x−y|

|x− y|n+2s
dydx

= eλδ
∫

Rn

∫

Rn

(u(x)− u(y))2 e−λ|x−y|

|x− y|n+2s
dydx

= eλδEtem(u;λ).

In the remainder of this section we provide several results yielding the estimate on the
right-hand side of inequality (5.3).

The following lemma shows that the integration domain of the truncated energy can be
extended to (Rn)2.
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Lemma 5.2. For u ∈ Hs
Ω(Rn),

Etr(u; δ) =

∫∫

(Rn)2
(u(x)− u(y))2|x− y|−n−2s1{|x− y| ≤ δ}dxdy.

Proof. We let G = G(x,y) = (u(x)− u(y))2|x− y|−n−2s1{|x− y| ≤ δ}, consider:

∫

Rn

∫

Rn

Gdydx =

∫

Ω∪ΩI

∫

Rn

Gdydx +

∫

Rn\Ω∪ΩI

∫

Rn

Gdydx

=

∫

Ω∪ΩI

∫

Ω∪ΩI

Gdydx +

∫

Ω∪ΩI

∫

Rn\Ω∪ΩI

Gdydx +

∫

Rn\Ω∪ΩI

∫

Rn

Gdydx

=

∫

Ω∪ΩI

∫

Ω∪ΩI

Gdydx +

∫

Ω∪ΩI

∫

Rn\Ω∪ΩI

Gdydx

+

∫

Rn\Ω∪ΩI

∫

Ω∪ΩI

Gdydx +

∫

Rn\Ω∪ΩI

∫

Rn\Ω∪ΩI

Gdydx.

Here, the last term vanishes because u ∈ Hs
Ω(Rn). For the same reason, and by definition

of G, we have that

∫

Rn

∫

Rn

Gdydx = Etr(u; δ) +

∫

Ω∪ΩI

u2(x)

∫

Rn\Ω∪ΩI

|x− y|−n−2s1{|x− y| ≤ δ}dxdy

+

∫

Ω∪ΩI

u2(y)

∫

Rn\Ω∪ΩI

|x− y|−n−2s1{|x− y| ≤ δ}dxdy

= Etr(u; δ) +

∫

Ω

u2(x)

∫

Rn\Ω∪ΩI

|x− y|−n−2s1{|x− y| ≤ δ}dxdy

+

∫

Ω

u2(y)

∫

Rn\Ω∪ΩI

|x− y|−n−2s1{|x− y| ≤ δ}dxdy

= Etr(u; δ).

Where the last equality follows from that fact that for x ∈ Ω and y ∈ Rn\Ω∪ΩI , |x−y| > δ;
i.e. the indicator function is zero.

The next lemma shows that for every λ there exists some value of the truncation pa-
rameter, δ for which the tempered energy is bounded by the truncated energy associated
with δ.

Lemma 5.3. For λ > 0, there exists a δ > 0 independent of u such that

Etem(u;λ) ≤ Etr(u; δ), ∀u ∈ Hs
Ω(Rn).

Proof. First, note that for any λ, Etem(u;λ) ≤ Etr(u;∞). Next, we show that there
exists δ such that Etr(u;∞) ≤ 2Etr(u; δ). This result is equivalent to

Etr(u;∞)− Etr(u; δ) ≤ 1

2
Etr(u;∞).
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Using Lemma 5.2,

Etr(u;∞)− Etr(u; δ)

=

∫

Rn

∫

Rn

(u(x)− u(y))2|x− y|−n−2s(1− 1{|x− y| ≤ δ})dxdy

≤ δ−n−2s

∫

Rn

∫

Rn

(u(x)− u(y))2(1− 1{|x− y| ≤ δ})dxdy

≤ δ−n−2s

∫

Rn

∫

Rn

(u(x)− u(y))2dxdy.

Since u ≡ 0 on Rn \Ω, we have

δ−n−2s

∫

Rn

∫

Rn

(u(x)− u(y))2dxdy ≤ Cδ−n−2s‖u‖2L2(Ω).

By invoking Lemma 4.3 of [4], we have

Cδ−n−2s‖u‖2L2(Ω) ≤ C ′δ−n−2sEtr(u;∞).

We conclude the proof by choosing δ = δ such that C ′δ−n−2s ≤ 1/2.
We recall the following result from [2] that state that all truncated energies are equiva-

lent.
Theorem 5.4. For any δ, δ′ > 0, there exist constants C1 and C2 such that

C1Etr(u; δ) ≤ Etr(u; δ′) ≤ C2Etr(u; δ).

Combining Lemma 5.3 and Theorem 5.4 we obtain the following estimate for the right-hand
side of (5.3).

Theorem 5.5. Given λ > 0,

Etem(u;λ) ≤ AEtr(u; δ), ∀u ∈ Hs
Ω(Rn),

where the positive constant A depends on Ω and is independent of u.

6. Conclusions. We discussed the consistency of the unified nonlocal Laplacian oper-
ator introduced in [3] with the tempered and truncated fractional Laplacian operators via
the equivalence kernel. With several numerical tests, we illustrated our theoretical results,
confirming that the composition of tempered fractional divergence and gradient yields the
tempered fractional Laplacian, whereas the composition of truncated fractional divergence
and gradient does not yield, as one might expect, a truncated fractional Laplacian operator.

With the purpose of identifying an operator that is equivalent to the tempered frac-
tional Laplacian, but computationally cheaper, we investigated the relationship between the
tempered fractional and truncated fractional energy norms and showed that for a fixed tem-
pered parameter λ, the tempered energy is equivalent to any truncated energy. This result
represents a step forward towards the identification of computationally cheap alternatives
to fractional operators whose integration domain spans the whole space Rn.
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AMG FOR MIXED FINITE ELEMENT REPRESENTATIONS OF
SYSTEMS OF PDES

ALEXEY VORONIN∗, RAYMOND TUMINARO† , LUKE OLSON‡ , AND SCOTT MACLACHLAN§

Abstract. We consider algebraic multigrid (AMG) preconditioners for systems of partial differential
equations (PDEs) discretized with mixed finite elements, where the degrees of freedom (DoFs) corresponding
to different quantities are not necessarily co-located at the mesh points. We specifically focus on applica-
tions such as the linearized steady-state Navier-Stokes equations, which give rise to saddle-point systems.
Within algebraic multigrid solvers, coarse-level discretization operators are automatically and algebraically
created by the solver. However, it is not generally well understood how to guarantee the stability of these
automatically generated operators for different discretizations and whether the stability is strictly necessary
to achieve satisfactory convergence. The focus of this work is on developing practical and theoretical guid-
ance into the different multigrid choices for this problem. We experimentally explore several AMG variants,
which highlight significantly different convergence histories. Then we revisit some fundamental concepts in
multigrid theory with a goal of adapting the theory to indefinite Stokes systems. It is anticipated that this
will lead to a better understanding of the different AMG variants and their associated convergence behavior.

1. Introduction. This study focuses on the numerical solution of the Stokes equations,
which are used to simulate incompressible viscous flow. The Stokes equations can be seen as
a linearization of the more general Navier-Stokes equations, which are at the heart of many
scientific and engineering applications. The key challenge in this work is that a discretization
of the Stokes equations leads to an indefinite and ill-conditioned saddle-point problem [5].

For positive-definite linear systems, multigrid methods have been shown to be fast
and effective solvers due to their arithmetic efficiency and grid-independent convergence
[4, 15].The rapid convergence rate of multigrid relies on the complementary nature of its
two main components: relaxation and coarse-grid correction. Relaxation reduces oscillatory
error components, while the coarse-grid correction addresses smooth error by ”solving” a
low-resolution version of the equations. This idea is then applied recursively, forming a
hierarchy of grids and grid transfers.

When using geometric multigrid (GMG) solvers, the hierarchy is simply composed of a
sequence of coarser discretizations of the original problem. However, the formation of geo-
metric inter-grid transfers is often challenging for applications that require complex meshes.
Algebraic multigrid (AMG) solvers are an attractive alternative in this situation because
the grid hierarchy and grid transfers are constructed automatically using only the matrix
and graph properties [4, 14, 15].

This paper investigates the application of AMG to sparse linear systems that arise from
discretizations of the Stokes equations using mixed finite elements. In the case of the mixed
finite-element discretization, the unknowns pertaining to different physical quantities are
not always co-located at the same mesh point. For co-located discretizations, it is common
to group DoFs at each mesh node to define a vertex of a nodal matrix graph that is then
coarsened to construct a coarse grid [7]. This AMG approach for dealing with PDE systems
where unknowns are co-located is not applicable in the general or mixed FE case where
DoFs are not co-located. Developing AMG hierarchies to address these general mixed finite-
element cases remains an open problem. In this paper, we examine the convergence behavior
of several multigrid variants for a non-co-located discretization of the Stokes equations. In
addition, we consider several theoretical observations to understand the pitfalls of applying
AMG to indefinite Stokes systems.
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2. Problem Formulation. We develop multigrid approaches to solve the Stokes equa-
tions, which model incompressible viscous fluid flow. The Stokes equations can be expressed
as

−∇2u +∇p = f in Ω

−∇ · u = 0 in Ω
(2.1)

for some arbitrary domain Ω ∈ R2, where u is a vector-valued function representing velocity,
p is a scalar pressure function, and f is a forcing term. The above equations are accompanied
by a set of boundary conditions on ∂Ω = ΓD ∪ ΓN such that

u = w on ΓD,
δu

δn
− np = s on ΓN (2.2)

where n is an outward-pointing unit-length normal vector to the boundary and δu/δn is
the directional derivative in the normal direction. The boundary condition terms w and s
are given.

The corresponding weak formulation of the Stokes equations is the following: Find
u ∈ H1(Ω) and p ∈ L2(Ω) such that

(∇u,∇v)− (∇ · v, p) = (f,v) for all v ∈ H1
0 (Ω)d

−(∇ · u, q) = 0 for all q ∈ L2
0(Ω)

(2.3)

Discretizing the weak formulation using two suitably chosen finite-dimensional sub-
spaces, V ∈ H1

0 and W ∈ L2, leads to a general algebraic system given in the following
form:

Ax =

[
M BT

B −C

] [
u
p

]
=

[
f
0

]
(2.4)

where C = 0.
In order to guarantee the discrete solvability of the above system, the finite-element

spaces V and W need to satisfy the so-called inf-sup stability condition. Many seemingly
appropriate element space pairings result in an unstable system, for example, Q1/Q1 where
a bilinear approximation space is used for both velocity and pressure. Unstable discretiza-
tions typically yield unphysical oscillatory solutions even when the boundary conditions are
smooth. The stability of the Q1/Q1 discretization can be recovered by replacing C = 0 with
an appropriately scaled bilinear stiffness matrix associated with the Neumann boundary
condition [5].

For the purpose of this paper, we have chosen Q2/Q1 discretization, which represents
biquadratic approximation for the velocity space and the bilinear approximation space for
pressure. The Q2/Q1 element discretization satisfies the inf-sup condition and therefore is
stable. The DoF locations for the Q2/Q1 element are depicted in Figure 2.1. For a detailed
discussion of the above-mentioned discretization and their stability proofs the reader is
referred to [5].
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Velocity DoF

Pressure DoF

Fig. 2.1: Q2/Q1 Finite Element Pair

3. Multigrid Methods. The effectiveness of multigrid (MG) methods comes from
the decomposition of grid functions into two energy-orthogonal subspaces: one for high-
energy (or oscillatory) components and another for low-energy (or smooth) components.
The oscillatory components should be effectively reduced via some simple iterative scheme,
usually referred to as relaxation. The residual equation is then projected onto a low-energy
subspace, also known as the coarse grid, where an approximate solution to the coarse-grid
problem can be computed more easily. The coarse solution is then interpolated to the fine
grid and is used to correct the fine-level solution. The multilevel version of this is called the
multigrid V-cycle, which is described in the Algorithm 1.

Algorithm 1 MG V-cycle

1: Input: x0, fine-level initial guess
2: b0, right-hand side
3: A0, ..., Almax−1; PDE discretization operator for each level
4: P1, ..., Plmax−1; Interpolation for each coarse grid
5: Output: x0, fine-level approximation after one V-cycle
6:

7: for l = 0, ..., lmax − 1 do
8: relax (Al, xl, bl) // Pre-relaxation
9: rl+1 = PTl+1(bl −Alxl) // Project residual onto coarse grid

10: xl+1 = 0
11: end for
12: xlmax−1 = solve(Almax−1, rlmax−1) // Direct solve on coarsest level
13: for l = lmax − 2, ..., 0 do
14: xl = xl + Pl+1xl+1 // Interpolate and correct
15: relax (Al, xl, bl) // Post-relaxation
16: end for

To set up a multigrid solver we need to define Al, Pl, and the relax function. In
our setting, for l > 1, the Al are formed via Galerkin coarse-grid approximation Al =
PTl Al−1P

T
l . The construction of the interpolation operators Pl is discussed in Sections 3.1

- 3.3. In this paper, we utilize a coupled block relaxation method for incompressible flow
problems called Brass-Sarazin relaxation, which is described in Section 3.4.

3.1. Coarsening. If grids are structured, then coarsening of grids, as in GMG, is
typically done by halving the number of degrees of freedom in each dimension, thereby
doubling the element edge length on the coarse grid. The interpolation operator is then
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defined as a weighted sum of the neighboring DoFs corresponding to piecewise polynomial
interpolation. This leads to a sequence of coarser discretizations of the original problem and
allows all grids in the hierarchy to preserve the notion of the finite element.

In contrast, in an AMG method, the coarse grid is formed automatically based on
the graph of the fine-level operator, oftentimes without any geometric grid data. This
is an attractive and oftentimes necessary approach when dealing with unstructured mesh
problems.

There exist several different AMG coarsening approaches. This paper primarily dis-
cusses Smoothed Aggregation based AMG (SA). AMG setup first determines the coarse grid
then defines an appropriate interpolation operator. In SA, each coarse-grid DoF is defined
as a collection of fine-level DoFs (also known as an aggregate), where the grouping/aggre-
gation of the fine-level DoFs is based on the undirected adjacency graph of the matrix.
The aggregate information is then used to define an interpolation operator that accurately
interpolates error that is not effectively reduced by relaxation.

3.2. Monolithic Interpolation. We can create a multilevel solver by providing the
assembled matrix A (2.4) without any other information to Smoothed Aggregation (SA)
solver (such as that found in PyAMG [11]). The problem with this approach is that SA
does not differentiate between velocity and pressure DoFs in the aggregation process, lead-
ing to aggregates with a mix of different unknowns: velocity and pressure DoFs. This is
problematic because the interpolation operator, as shown in the Figure 3.1(a), mixes dif-
ferent DoF types (vx, vy, p). That is, a column of the interpolation matrix will generally
have column entries corresponding to the different DoF types. The Galerkin coarse-grid
approximation using these grid-transfer operators results in a coarse-grid discretization ma-
trix (Figure 3.1(b)) with a non-zero lower diagonal block, thus not having the saddle-point
structure.

0 50 100 150 200 250
0

2000

4000

6000

8000

Pvx

Pvy

Pp

(a) Interpolation Operator Sparsity Pattern

0 50 100 150 200 250
0

50

100

150

200

250

(b) Coarse-grid Sparsity Pattern

Fig. 3.1: Naive MG Sparsity Patterns. Each marker corresponds to a nonzero entry in the
matrix.

3.3. Component-wise interpolation. In order to preserve the saddle-point structure
of the matrix on the coarse grids, we can construct block diagonal interpolation operators,
P , where all components of the solution interpolate only from the coarse DoFs of the same
components: velocity (Pv) and pressure (Pp). As demonstrated in Equation (3.1), the saddle
point structure of the coarse-grid operator, Ac, is preserved when the coarse-grid operator
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is formed with a block diagonal interpolation operator, P .

Ac = PTAP =

[
PTv

PTp

] [
M BT

B 0

] [
Pv

Pp

]
=

[
PTv MPv PTv B

TPp
PTp BPv 0

]
(3.1)

3.3.1. Geometric Interpolation. The geometric interpolation operators for the Stokes
system described in Section 2 are defined using the piecewise basis functions associated with
a Q2/Q1 discretization of the coarse grid: a biquadratic basis (Pv) for the velocity elements
and a bilinear basis (Pp) for the pressure. Preserving the same finite element discretization
on all grids guarantees the inf-sup stability of the coarse-grid operators.

3.3.2. Separate SA Interpolation. The interpolation operators in AMG can also be
constructed to have a block-diagonal structure. To do so, we exploit the block-structure in
A, forming a smoothed aggregation hierarchy for each component of velocity and pressure
independently. Although this yields a saddle-point structure, the coarse-grid operator is not
guaranteed to satisfy the same inf-sup stability condition that the fine-grid discretization
has.

We construct the velocity interpolation operator by applying SA to the vector-Laplacian
block, M . As the (2,2)-block of (2.4) is zero, it obviously cannot be used in conjunction
with an SA procedure to generate an interpolation operator. Instead, some type of auxiliary
operator needs to be constructed. The operator BBT corresponds to pressure Poisson
operator and so is a potential candidate for this auxiliary matrix. The only technical problem
is that for a Q2/Q1 discretization, BBT has a somewhat denser stencil (with non-nearest
neighbor entries) than is desired for the AMG coarsening procedures found in most SA
packages. To correct this, we adopt the same approach described in [12]. First, we remove
off-diagonal entries of Z = BBT that satisfy |Z| ≤ τ

√
|ZiiZjj |, where τ is an appropriately

chosen constant, and lump them onto the diagonal so that the row sum is preserved. For
more details on this technique, the reader is referred to [12].

Since the correlation between pressure and velocity aggregation patterns is not enforced,
the coarse-grid velocity basis and pressure functions are also uncorrelated. As a result, the
relative ratio of pressure DoFs on the coarse grid is closer to one-to-one, which resem-
bles more the unstable Q1/Q1 discretization rather than Q2/Q1 discretization that we
chose. The structure and the relative positioning of the pressure and velocity aggregates
is depicted in Figures 3.2-3.3 for two different aggregation strategies: standard and Lloyd
Aggregation. Lloyd aggregation is a coarsening approach that utilizes k-means clustering for
graphs in order to distribute/seed aggregates centers in a way that minimizes the average
distance of a given point to the nearest center aggregate center [1]. In the context of our
research, it was used to examine the effect of aggregation techniques on the convergence.

3.3.3. Co-aggregation. While the separate SA approach preserves the saddle-point
structure of the matrix, the 4:1 ratio between velocity DoFs and pressure DoFs’ is not
maintained on coarser grids. This brings forth concerns regarding coarse-grid stability. The
co-aggregation approach is motivated by trying to keep the ratio of DoFs on the coarse grid
similar to that of the fine-level matrix. This ’correct’ ratio would still not guarantee the
stability of the coarse-grid operators but is perhaps a step in the right direction.

We have identified but not tested several approaches that would help us preserve the
desired ratio. One such approach we refer to as tiling. During the first pass of the aggregation
phase, we would group the velocity DoFs into 2 × 2 bricks, which we call supernodes. For
the second pass, the supernodes are aggregated. These supernode aggregates are then
post-processed so that each supernode aggregate defines one coarse-pressure DoF and four
coarse-velocity DoFs. The same idea would hold in 3D for an 8:1 ratio. The construction of
the interpolation operator using the coarsened data is still largely an open question to us.
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Fig. 3.2: Standard Aggregation. The plots depict velocity/pressure DoFs (red), mesh edges
(light grey), and aggregates (collection of black lines connecting the red dots).
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Fig. 3.3: Lloyd Aggregation. The plots depict velocity/pressure DoFs (red), mesh edges
(light grey), and aggregates (collection of black lines connecting the red dots).

3.4. Relaxation. Classical relaxation methods such as Jacobi and Gauss-Seidel are
not well-defined for saddle-point systems due to the large zero block and the indefinite
system. As a result, we turn to Braess-Sarazin relaxation, which exploits the block structure
of the system to produce a smoothing property [2].

Braess-Sarazin relaxation is based on the block LU factorization of the discretized sys-
tem, A, in Equation (2.4):

[
αM̂ BT

B 0

] [
ffiu
δp

]
=

[
αM̂ 0
B S

] [
I 1

αM̂
−1BT

0 I

] [
ffiu
δp

]
=

[
ru
rp

]
(3.2)

where M̂ is a preconditioner for M , S = 1
αBM̂

−1BT and α is a relaxation parameter.
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The robustness of this algorithm relies on the ease of computability of M̂−1. In our case,
D = M̂ =diag(M), which makes the inversion trivial and reduces the overall algorithm to
two sequential steps:

Sδp =
1

α
BD−1ru − rp

δu =
1

α
D−1(ru −BT δp)

(3.3)

where δu and δp correspond to the velocity and pressure residual corrections. The Schur
complement equation is approximately solved using Jacobi relaxation.

4. Experiments. In this section, we present results for the Stokes problem using
multigrid solvers presented in the previous sections. The solvers are applied to the traditional
lid-driven-cavity-flow problem on a square mesh (Ω = [0, 1]2), where the boundary condition
(Equations (2.2)) parameters w and s are given. The velocity, w, is non-zero only on
the top side of a rectangular domain and is prescribed by the regularized cavity model
{y = 1, : 0 ≤ x ≤ 1 | ux = 1− x4}. The s is set to be zero everywhere along the boundary
in order to satisfy the computability condition of the boundary data.

The algebraic systems were generated using Firedrake system [13] and the proposed
algorithms were constructed with the help of PyAMG library [11]. A typical solution for a
10× 10 mesh is depicted in Figure 4.1.

(a) Velocity Solution (b) Pressure Solution

Fig. 4.1: Equally distributed streamlines for the solution to Stokes lid-cavity problem.

We used left preconditioned GMRES as an iterative method with stopping criteria
of 1e-9 relative residual tolerance or 100 maximum iterations, whichever is reached first.
Each application of the multigrid preconditioner entails a single V-cycle. In our analysis of
the convergence, we are interested in seeing a relatively small number of iterations to the
convergence, and h-independence - the number of GMRES iterations doesn’t grow as the
mesh is refined.

In all of the numerical results (unless otherwise stated), we use two sweeps of Braess-
Sarazin (BS) for the pre-/post- relaxation. Each BS relaxation application involves three
iterations of Jacobi relaxation to approximate the solution of the Schur complement system.
The BS damping parameter, α, was set to 1.01 and the Jacobi damping parameter was
set to ωJ = 1 for GMG [6]. In the case of AMG, we find that ωJ = 1/2 results in better
convergence.

4.1. GMG. The convergence results for the geometric multigrid preconditioned GM-
RES solver are shown in Figure 4.2. The results depict MG convergence for varying mesh
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sizes and the number of multigrid levels. The desired h-independent convergence is achieved,
which causes some of the lines to overlap.
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Fig. 4.2: GMG Preconditioned GMRES Convergence Results

4.2. Naive AMG. As mentioned previously, the default PyAMG’s SA setup con-
structs a series of coarse grids that do not have a saddle-point structure. Hence, Braess-
Sarazin relaxation is not well defined for those grids. Luckily, PyAMG provides a default
relaxation procedure - point-wise Gauss-Seidel, which we will use for all levels of the hi-
erarchy. PyAMG’s implementation of the relaxation ignores rows that have zero on the
diagonal, which allows the relaxation not to break down on the fine level. While the coarse
grid does not have the zero-block like the fine-level operator, the coarse-grid DoFs represent
a mixture of different fine-level unknowns for which the smoothing property is uncertain.
The Naive AMG’s convergence flatlines after several iterations (Figure 4.3).
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Fig. 4.3: Naive AMG: Convergence Results

4.3. Separate AMG. In the case of Separate AMG, the multigrid hierarchies for
pressure and velocity interpolations are formed independently of each other. The parameters
passed to the SA setup phase for each field are shown in Table 4.1. Both for pressure
and velocity fields, we used symmetric strength of connection between the DoFs, and two
different types of DoF aggregation approaches. For more information about these parameters
please refer to the PyAMG library [11]. Since the separate AMG approach is sensitive to
the aggregation techniques chosen, we show the convergence results for both ’Lloyd’ and
’standard’ aggregation (see Figure 4.4).
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Table 4.1: Smoothed Aggregation Parameters

Field Aggregation Matrix Smooth
Velocity M Jacobi(ω = 4/3)

Pressure
Z = BBT

Ẑ =drop small entries(Z) energy
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(a) Standard Aggregation
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Fig. 4.4: Separate AMG: Convergence Results

Using the AMG methods as stationary iterations (not shown here) produces significantly
worse convergence histories. Overall, the total number of iteration is not that high for the
meshes that we have been able to investigate. However, there is a general growth in the
number of iterations as well as a sensitivity to the aggregation scheme, both of which are
cause for concern. In order to identify what is going wrong the AMG v-cycle, we turn to
the convergence analysis.

Table 4.2 illustrates the ratio of x velocity DoFs to pressure DoFs, demonstrating how
it can stray far from the ratio on the finest grid. This does not necessarily imply a stability
issue but might indicate an area of concern

Table 4.2: Ratio of velocity (x-component) to pressure DoFs

MG level Standard Aggregation Lloyd Aggregation
0 3.97 3.97
1 2.22 3.97
2 1.67 4.21
3 1.28 1.0

4.4. Convergence Analysis. The main goal for our future work is to better under-
stand the role the coarse-grid stability plays in the multigrid convergence, especially in the
Q2/Q1 case.

To understand the stability issues, we have begun an investigation into a two-level MG
hierarchy where the fine-level grid is a Q2/Q1 discretization and the coarse-level grid is
Q1/Q1, where bi-linear interpolation is used to transfer corrections between grids. That is,
we have purposely chosen an unstable coarse-grid discretization. Interestingly, our exper-
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iments show that a two-level MG solver converges without issue any issues in a relatively
mesh independent fashion, even though the coarse grid is unstable. This may lead one to
believe that coarse-operator stability is unimportant. However, multilevel (greater than 2)
GMG results using Q1/Q1 coarse grids yield more problematic results from a convergence
perspective.

To understand this example as well as the results presented in Section 4.3, we want
to consult the two main principles underlying MG theory: smoothing and approximation
properties. The smoothing property describes a relaxation method’s ability to cope with
a high-frequency error. The approximation property measures how well the relaxed error
can be represented on the coarse grid. These two properties are used to prove that the
reduction in error by a factor that is independent of the size of the grid, which is also known
as h-independence.

Techniques for establishing these properties were studied by several authors in the early
1980s, applied to both geometric and algebraic multigrid [10, 3, 9]. Convergence analysis for
AMG is nicely summarized in the seminal paper of Ruge and Stüben [14], at least for the
case of symmetric and positive-definite systems. Since then more practical, although less
sharp, convergence bounds have been developed and applied to diagnose AMG convergence
for SPD systems [8]. However, due to the indefiniteness of the Stokes’ system, this analysis
is not directly applicable.

Some research has been published on extending the above-mentioned principles to GMG
for the saddle point systems [16]. The smoothing and approximation properties in those
cases depend on norms scaled by the mass matrices and the element edge length parameter,
h, which are not always well defined for the coarse grids of AMG hierarchies. Hence, in order
to adapt the smoothing and approximation principles to AMG for saddle-point systems, we
first need to define the appropriate norm.

4.5. Conclusion. AMG preconditioners for systems of PDEs discretized with mixed
finite elements are difficult to construct, especially where the degrees of freedom (DoFs)
corresponding to two different quantities are not co-located at the mesh points. We have
constructed AMG hierarchies that preserve the saddle-point nature of the original problem,
which resulted in reasonable although not h-independent, convergence for some choice of
parameters. In order to better understand these results, we turn to MG theory for the
future direction of the research.
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II. Software & High Performance Computing

Articles in this section discuss the implementation of high performance computing (HPC)
and productivity software. In many cases, performance improvements and portability are
demonstrated for many-core architectures, such as conventional multicore CPUs, the Intel
Many Integrated Core coprocessor (MIC), and graphical processing units (GPU).

1. Bielich, Langou, Yamazaki, Loe, and Boman present a one-column-at-a-time im-
plementation of the Householder algorithm within Trilinos and provide
performance results in the QR factorization setting.

2. Bogle, Boman, Devine, Rajamanickam, and Slota present several MPI+GPU ap-
proaches for graph coloring; essential for parallelizing scientific computations
that run in distributed and multi-GPU environments. They tackle distance-2 color-
ing and give the first known distributed and multi-GPU algorithm for this problem.

3. Carlson, Watkins, and Tezaur identified performance bottlenecks related to the
evaluation of the boundary conditions in Sandia’s Albany Land-Ice (ALI)
code base. They reworked how boundary conditions are represented in Albany
such that all memory accesses on the GPU are now properly coalesced, resulting in
performant GPU kernels.

4. Cobb, Phipps, and Kolla detail several implementations of optimized, performance
portable Tensor Times Matrix (TTM) kernels utilizing the Kokkos program-
ming model. They show how their optimized TTM kernel can competitively speed
up the Sequentially Truncated Higher-Order Singular Value Decomposition (ST-
HOSVD) algorithm among other tensor algorithms.

5. Ford, Martin, Gieseler, and Cabrera-Palmer present updates on the Instrument
Characterization Catalog (CharCat), intended for the storage and visualization of
characterization data pertaining to radiation detectors.

6. Madrid Larranaga and Witzel use quantum circuits as an intuitive visual rep-
resentation of quantum programs and extend Prove-It (a Python-based, Sandia-
developed interactive theorem prover) with quantum circuit proof capabilities.

7. Miller, Hughes, and Cook evaluate DPC++, an embedded domain specific lan-
guage (eDSL), using DOE proxy applications to identify programmability gaps and
performance on Intel FPGAs. They completed initial testing with the MiniAMR
application from the Mantevo suite, focusing on the 7-point stencil.

A.A. Rushdi
M.L. Parks

November 1, 2020
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HOUSEHOLDER ORTHOGONALIZATION IN TRILINOS

DANIEL BIELICH∗, JULIEN LANGOU† , ICHITARO YAMAZAKI‡ , JENNIFER LOE§ , AND ERIK

BOMAN¶

Abstract. Orthogonalizing a set of basis vectors is an important part of nonsymmetric iterative solvers
for the solution of linear systems or eigenvalue problems. The use of Householder reflection to numerically
compute an orthogonal basis is known to be unconditionally stable. For this reason, Householder reflections
are used in most (if not all) state-of-the-art dense numerical linear algebra packages (e.g. LAPACK).
Within this paper, we discuss an implementation of the Householder algorithm within Trilinos and provide
performance results in the QR factorization setting. The framework we work is “one-column-at-a-time”
or “left-looking algorithm with a block size of 1”. This is a typical framework for iterative methods. The
Householder orthogonalization algorithms “one-column-at-a-time” presented in this paper (Level 1 and Level
2) were explained for the first time in [6].

1. Introduction. The Householder algorithm is known to be unconditionally stable
when computing an orthogonal basis numerically. As such, it is important to include this
algorithm as an option for a numerical linear algebra package such as Trilinos. This report
explains the work done over a Summer internship at Sandia where the main contribution
was to implement the Householder orthogonalization scheme within Trilinos. Many algo-
rithms and factorization methods can utilize Householder orthogonalization (e.g. Arnoldi
expansion). In this paper, we use the Householder orthogonalization to compute the QR
factorization of a tall-skinny dense matrix. This is a typical scenario for an Arnold expan-
sion.

We have implemented two different variants of the Householder algorithm. The first
variant is based on Level 1 BLAS and the second variant is based on Level 2 BLAS. It is
important to note that, since we are in the “one-column-at-a-time” framework, it is not
possible to derive a Level 3 BLAS variant. Both variants are implemented in C and in the
Trilinos framework. We essentially use the two Householder variants (Level 1 and Level 2)
as explained by Walker in 1988 in [6].

The Level 1 BLAS variant when used in the QR factorization framework is very similar
to PDGEQR2+PDORG2R in ScaLAPACK when using 1-D distribution for tall-and-skinny
matrices. Therefore we will also compare our performance results with ScaLAPACK.

Though the Level 2 variant requires more floating-point operations than the Level 1 vari-
ant, it requires much fewer synchronizations. As a result, our performance results using on
up to 4096 Intel SandyBrigde CPUs demonstrate that the Level 2 variant (coded in C) scales
better than the Level 1 variant or ScaLAPACK. We also compare the parallel scalability
of our implementation to the classical Gram-Schmidt algorithm with reorthogonalization
(CGS2), our performance results demonstrate that the Level 2 variant scales similar to
CGS2 with a constant overhead. CGS2 has some fewer synchronizations and fewer FLOPS
than the Level-2 variant. We have observed that, in some pathological cases in Arnoldi
expansions, CGS2 suffers from numerical instability that the Householder variants do not.

The rest of the paper is organized as follows: In Section 2, we discuss the varying orthog-
onalization schemes used throughout this paper. We are very much interested in parallel
computation so we discuss the demands to achieve this for each algorithm (synchronizations
and volume of messages sent) as well as the associated complexity. We discuss the numer-
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‡Sandia National Laboratories, iyamaza@sandia.gov
§Sandia National Laboratories, jloe@sandia.gov
¶Sandia National Laboratories, egboman@sandia.gov
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ical stability for each method. The cost per iteration and as a whole for each algorithm.
In Section 4, we provide performance results. We provide experiments that show the scal-
ability and robustness of each algorithm. Provide some insight into the results presented.
Within the Conclusion we summarize the paper but also give insight into the future work
we intend on continuing. For details on implementation and to see the struggles we faced
while implementing HH lvl2 into Trilinos, please refer to the appendix (Section A).

2. Orthogonalization Schemes. There are three main types of orthognalization
schemes used for numerical computation, they fall under either (1) the Gram-Schmidt um-
brella or (2) the Householder umbrella or (3) the Givens umbrella. Givens rotations are
used to eliminate specific entries in a matrix, so, while we could use them in this frame-
work, they are unlikely to perform well. When working on zero-ing out whole vectors,
a Householder-based method or a Gram-Schmidt-based method is preferred. Therefore,
within this document we compare two different orthogonalization schemes which are of
Householder type (Algorithms 1 and 2) and one Gram-Schmidt algorithm (Algorithm 3).
The Householder orthogonalization method (Level 1 or Level 2) is commonly used in LA-
PACK and in ScaLAPACK. CGS2 is commonly used in Trilinos. The Householder Level 1
(HH lvl1) and Householder Level 2 (HH lvl2) algorithms are used for their unconditional
stability. The Classical Gram Schmidt with reorthogonalization (CGS2) is used for the ease
of implementation as well as the added stability by reorthogonalizing.

2.1. Algorithms. In the following four subsections we discuss the main components
needed for each different algorithm, the overall steps each algorithm undergoes for a given
iteration, and the cost for each algorithm in terms of flops and communication between
processes.

2.1.1. Classical Gram-Schmidt Re-Orthogonalized. The CGS2 algorithm (Algo-
rithm 3) is the easiest scheme to implement. It requires three main steps per iteration: (1)
& (2) two projections, followed by (3) a normalization. Within the algorithm, at step j, you
enter the CGS2 orthogonalization function with the jth column to be orthogonalized and
the j − 1 orthogonal columns (Q1:m,1:j−1) constructed in the prior j − 1-iterations.

The projection step is to apply (I − Q1:m,1:j−1Q
T
1:m,1:j−1) to the column ready for

orthogonalization. This is done twice. Mathematically projecting twice does absolutely
nothing if the vector Q1:m,1:j−1 forms an orthonormal basis. However, in finite precision
arithmetic, the first projection may lose its accuracy and therefore a second projection would
then be needed.

CGS2 requires only three synchronizations per iteration, regardless of the iterate. Once
for each projection (i.e the operations of the kind QTa). The third occurs when normalizing.
So, the overall demand in communication in terms of number of reduction operations, at
step j, is 3 and the aggregated volume of communication is 2j − 1.

Algorithm 3 in the Appendix shows the pseudocode of the CGS2 algorithm. Figure B.4
provides Matlab code for the algorithm with a main driver, Figure B.1.

2.1.2. Householder Level 1. The Householder Level 1 algorithm (Algorithm 2) is
complex and arguably more difficult to implement than CGS2. Also it requires additional
steps and additional storage compared to CGS2. This algorithm has five main components
(two more than CGS2). Householder Level 1 needs Q, V, R and τ . Q is the orthogonal
factor and is dense, V are the Householder reflections (note V is unit-lower triangular),
R is the upper-triangular factor which represents A through Q and τ is a 1 × j vector, j
being the size of the current iteration. Note that, in sequential computation, one can save
on storage by using the top of V to store R. One can take advantage of the unit triangular
parameter for the BLAS function DTRMV. In general, in parallel computation, in iterative
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methods, the R-factor is replicated on all processes. We follow this scheme, so we do not
store “R on top of V ” (even on process 0).

The algorithm contains three overall steps per iteration. Consider step j, at this step
we have constructed Q1:m,1:j−1, V1:m,1:j−1, R1:j−1,1:j−1, τ1:j−1. The goal is to append the
jth column to Q,V and R, as well as compute τj . The way to accomplish this is, first
apply the previous j − 1 Householder reflections to update aj , this is done sequentially (i.e.∏j−1
i=1 (I −V1:m,iτiV

T
1:m,i) ). After this operation aj is updated. The top j − 1 elements are

exactly R1:j−1,j , meaning the appended column to R is almost finished, the jth element,
rj,j , will be constructed during the second step. The following step is to construct τj and
the jth Householder reflection. Please refer to Algorithm 2 to see the details. The final step
is to construct and append the orthogonal column Q1:m,j . Which is applying the now j
Householder reflections in reverse order, applied to the the jth basis vector ej .

This algorithm requires 2j synchronizations per iteration, j − 1 from the first step,
updating aj , two synchs from the second step (a dot product of the updated column aj
and broadcasting Vj,j so we can construct the correct τj and the corresponding Householder
reflection). Finally there are j − 1 synchs for constructing the orthogonal factor. We get
away with not adding a synch when applying (I −V1:m,jτjV

T
1:m,j)ej because VT

1:m,jej = 1.
So we get away with setting Q1:m,j = ej − τjV1:m,j avoiding a communication. Note the
aggregated volume of communication sent is 2j, each inner-product produces 1 element that
needs to be reduced. There is an additional cost of size j to send the new column of R to
each process. Thus the aggregated volume of communication for HH lvl1 is 3j.

Algorithm 2 in the Appendix shows the pseudocode of the level-1 algorithm. Figure B.3
provides Matlab code for the algorithm with a main driver, Figure B.1.

2.1.3. ScaLAPACK. For comparison, we use the ScaLAPACK subroutine
PDGEQR2+PDORG2R. This should perform the same operations as HH lvl1. The main dif-
ference is that the ScaLAPACK interface is asking for the whole matrix A at the start.
(As opposed to access A and return Q “one-column-at-a-time”.) This is a major difference
from an interface point of view, and, therefore ScaLAPACK PDGEQR2+PDORG2R cannot be
used in the context of iterative methods like, e.g., GMRES. That being said, the algorithms
within ScaLAPACK PDGEQR2+PDORG2R are working “one-column-at-a-time” and should
therefore behave very closely to HH lvl1.

For disclaimer, it is possible to use ScaLAPACK to obtain a real “one-column-at-a-time”
interface. The sequence of operation would be something like PDORM2R to push in the small
world (applying the Householder reflections to update, this zero’s out the first j−1 elements
in the updated column and is thus a small world), PDLARFG to create the r column and the
v vector, PDORG2R to construct q, and PDORM2R to pop in the big world (we get the top
j − 1 elements, putting us back into a big world). We are mainly interested in performance
comparison. So, we thought comparing to ScaLAPACK PDGEQR2+PDORG2R would be good
enough.

ScaLAPACK PDORG2R and PDORG2R are implementations of right-looking algorithms.
Using a right-looking algorithm is possible only when all of the columns of A are given to the
routine PDGEQR2 when called. It is important to understand that in the “one-column-at-a-
time” paradigm, we do not have all the columns at once, so we cannot use a right-looking
algorithm. We do nevertheless compare to ScaLAPACK as a reference point for performance.
When ScaLAPACK applies a Householder matrix, the algorithm applies the matrix to the
trailing columns of the input matrix A. Additionally, when constructing Q using PDORG2R,
ScaLAPACK takes advantage of having all Householder reflections. First, the routine applies
the last constructed Householder matrix H(n) (note: H(n) = (I − vnτnvTn )) to en (the nth

standard-basis vector). The next step the algorithm applies H(n− 1) to [en−1; H(n) · en].
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Through this ScaLAPACK can take advantage of structure by reversing the order of how the
columns of the orthogonal factor is constructed. So ScaLAPACK constructs qn first, then
qn−1, etc. The order for ScaLAPACK is v1, v2, ...,vn, qn, qn−1,...q1. This is not possible
in our “one-column-at-a-time” framework in the sense that once v1 is constructed we must
construct q1 The order for HH lvl1 and lvl 2 is v1, q1, v2, q2, v3, q3, ...,vn, qn.

2.1.4. Householder Level 2. Householder Level 2 consists of five main steps when
dealing with parallel computation.

1. Apply the previous Householder reflections to update the current column;
2. Broadcast R (the triangular factor in a QR decomposition - only needed for parallel

computation);
3. Construct the new Householder reflection;
4. Construct the next column in the orthonormal basis;
5. Construct and broadcast the next column in the triangular factor T , a consequence

of blocking Householder reflections.

At a given iteration, with these five steps, the algorithm constructs the new Householder
reflection vector, the new orthonormal basis vector and the next column within the upper-
triangular factors R and T .

This algorithm differs from HH lvl1 by instead of applying the Householder reflections
sequentially, both when updating aj and constructing Q1:m,j , these operations are blocked.
Please refer to the Appendix, section A for a better understanding. A consequence of
blocking these Householder reflections is, there is an upper-triangular factor T needed to keep
the algorithm mathematically equivalent, i.e. (I−v1τ1v

T
1 ) · · · (I−vnτnvTn ) = (I−VTVT ).

Let’s evaluate projecting two Householder matrices,
(
I − v1τ1v

T
1

) (
I − v2τ2v

T
2

)

= I − v1τ1v
T
1 − v2τ2v

T
2 + v1

(
τ1v

T
1 v2τ2

)
vT2

= I − [v1; v2]

[
τ1 τ1v

T
1 v2τ2

0 τ2

]
[v1; v2]

T

which shows the additional term needed to keep the algorithm equivalent while blocking.
Now let us consider an arbitrary step j where we have j − 1 columns in V, T .

(
I −V1:m,1:j−1T1:j−1,1:j−1V

T
1:m,1:j−1

) (
I − vjτjv

T
j

)

= I −V1:m,1:j−1T1:j−1,1:j−1V
T
1:m,1:j−1 − vjτjv

T
j

+ V1:m,1:j−1

(
τjT1:j−1,1:j−1V

T
1:m,1:j−1vjτj

)
vTj

= I − [V1:m,1:j−1; vj ]

[
T1:j−1,1:j−1 T1:j−1,1:j−1V

T
1:m,1:j−1vjτj

0 τj

]
[V1:m,1:j−1; vj ]

T
.

This shows exactly the formula to construct a column in T

T1:j−1,j = T1:j−1,1:j−1V
T
1:m,1:j−1V1:m,jτj (2.1)

Tj,j = τj , the diagonal of T is exactly the elements in the 1 × j vector τ used in the
Householder Level 1 algorithm.

The benefit of blocking these operations is that we can reduce the cost of communica-
tion. The drawback is an increased cost in floating point operations, due to the need to
construct T , and to apply T ; as well as a cost in storage to store T because each process
needs it. Householder Level 2 has more FLOPs than Householder Level 1 but has a con-
stant cost in communication (constant means independent of j). The algorithm has five



D. Bielich; J. Langou; I. Yamazaki; J. Loe; E. Boman 143

synchronizations that correspond to the five steps mentioned above. At step j, one synch
happens when updating aj . The second synch is when we construct τj and V1:m,j . The
third happens when constructing Q1:m,j , the fourth when constructing T1:j−1,j and finally
the fifth synch happens when broadcasting R1:j,j to each process. Hence the aggregated
volume of communication is 4j at iteration j.

Algorithm 1 in the Appendix shows the pseudocode of the level-2 algorithm. Figure B.2
provides Matlab code for the algorithm with a main driver, Figure B.1.

2.2. Numerical stability. Below we provide a table (Table 2.1) which shows what
we can expect, as far as numerical stability, from each algorithm presented. Please refer to
[4], [6] and page 361 in [5]. In the context of the QR Factorization (the column regarding

representativity) we would expect each method to satisfy ‖A−Q̂R̂‖F /‖A‖F ≤ c1(m,n)O(µ)
Where c1 is some function of m and n. µ is the precision of the hardware setup in use (we use
double-precision so expect µ ≈ 10−16) and ‖ ·‖F stands for the Frobenius norm. The hat on
Q, R implies they are computed quantities. The column for orthogonalization shows what
one can expect for the error produced in evaluating the orthonormality of Q. We evaluate
the following after each run, ‖I − Q̂T Q̂‖ ≤ c2(m,n)O(µ). Where c2 is some function of m
and n.

We note that the bound on orthogonality for CGS2 has only be proven true under the
assumption that A is numerically nonsingular. However it seems that CGS2 is numerically
stable in practice for many matrices (including many of the ones that are numerically non-
singular). It seems that, counter-intuitively, numerical errors are actually helping CGS2
being more stable. (Trying to quantify this in a probabilistic sense would actually be a nice
research project.) We have observed that, in some pathological cases coming from Arnoldi
expansions, CGS2 suffers from numerical instability that the Householder variants do not.
So the bound in Table 2.1 for orthogonality of CSG2 is false. But, we believe that, in a
probabilistic sense, they are correct. And we have observed that they are more representa-
tive of what one is likely to observe. And they have been proven correct if one assumes that
A is numerically nonsingular.

Orthogonalization Scheme Representativity Orthogonalization

CGS2 O(µ) O(µ)
HH Level 1 O(µ) O(µ)
HH Level 2 O(µ) O(µ)

Table 2.1: Level of Orthogonalization and Representativity one can expect from each
method.

2.3. Communication and Computation Costs. The following tables (Table 2.2
and Table 2.3) show, for each algorithm, the highest demanding terms of cost in commu-
nication, number of All-Reduce type operations (synchs) and the size of the messages sent
per iteration (volume). HH lvl1 and CGS2 both share the same number of FLOPs, but the
number of synchronizations vary greatly. Especially when j is large. HH lvl 2 on the other
hand has more demand in two of the three categories. The number of synchronizations per
iteration remains constant though, which is nice for any communication bound problem.
The reason HH lvl 2 has a greater demand in FLOPs and volume is the need to construct
T , so blocking the Householder reflections is possible. Please refer to section 5 for details
regarding how we can achieve T for free essentially, providing one wants to construct the
orthogonal factor Q and not only R.
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Orthogonalization Scheme FLOPs per Step Synchs Volume

CGS2 8(m/p)j 3 2j
HH Level 1 left-looking 8(m/p)j 2j 3j

HH Level 1 right-looking 8(m/p)(n− j) 2(n+ j) 3(n+ j)
HH Level 2 10(m/p)j + 3j2 5 4j

Table 2.2: Highest demanding term for FLOPs, Synchs and the Volume at iteration j.

Orthogonalization Scheme FLOPs Synchs Volume

CGS2 4(m/p)n2 3n n2

HH Level 1 left-looking 4(m/p)n2 n2 3
2n

2

HH Level 1 right-looking 4(m/p)n2 n2 3
2n

2

HH Level 2 5(m/p)n2 + n3 5n 2n2

Table 2.3: Highest demanding term for FLOPs, Synchs and the Volume after a full factor-
ization.

2.4. Memory footprint. At step j, CGS2 takes as input one column of A and j − 1
columns of Q and outputs the j-th column of Q. So CGS2 needs mj memory space to
operate at step j.

At step j, HH takes as input one column of A and j − 1 columns of V and output
the j-th column of V, and the j-th column of Q. From then, there are three options: (1)
one can decide to keep all the vectors of Q generated, in which case storage would be 2mj,
(2) one can decide to reconstruct the vectors Q in place at a later time from the vectors
V, this is certainly possible but is somewhat extreme, the storage would only be Q, this
is not really the modus operandi that we have in mind, so we skipped this option, (3) one
can use the constructed vector q for the next iteration (in Arnoldi expansion for example)
and then keep on reusing this memory space as iteration comes along. The storage would
be m(j + 1). So close to CGS2. This is the modus operandi we have in mind. Please note
that we can construct linear combination of the vectors Q pretty easily and cheaply from
V without reconstructing the full Q.

3. Experiment Setups. We have implemented the Classical Gram Schmidt and House-
holder orthogonalization algorithms in C using BLAS and MPI. We also have another imple-
mentation of the algorithms based on Trilinos software package framework. In particular,
for matrix and vector operations on the distributed-memory computer, we used Tpetra
software package [1] and MultiVector traits interfaces of Belos software package [2]. Both
implementations are publicly available, and more details of our implementation are provided
in Appendix A. We first compare the performance of our C implementation with House-
holder implementation (PDGEQR2 and PDORG2R) of ScaLAPACK. We then compare the
performance of our C and Trilinos implementations.

We conducted our numerical experiments on SkyBridge cluster at Sandia National Lab-
oratories. Each compute node of SkyBridge has 16-core 2.6 GHz Intel SandyBridge CPU
and 64 GB of main memory. These compute nodes are connected through QDR Infiniband.
We compiled our code using Intel 2020 2.254 compiler with the optimization flag -O3, and
linked to Intel Math Kernel Library (MKL) and OpenMPI-Intel 4.0.3.

For our performance studies, we focus on the tall-skinny matrices (m� n), and hence,
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we used the random matrices with the following three sets of sizes:
1. m = 3, 000, 000 and, n = 50;
2. m = 20, 000, 000 and, n = 50;
3. m = 50, 000, 000 and, n = 50.

We have verified the correctness of our implementations by checking the resulting represen-
tation and orthogonality errors (i.e., ‖A−QR‖F /‖A‖F and ‖QTQ−I‖F ) were of the order
of machine precision.

We report the fastest time from five runs. There are two experiments repeated three
times in each of the discussions. The first experiment is the left column of plots, which
is a performance experiment. The second experiment is the right column of plots, which
consist of the time to solution for performing the QR factorization on a dense tall-skinny
matrix. These two experiments we repeated three times, the number of nodes used remains
constant, 1 node to 256 nodes (doubling for each data point). The size of the matrix varies
for the different runs. The first row corresponds to a matrix size of m = 3 ∗ 106, the second
row m = 20 ∗ 106 and the third row m = 50 ∗ 106.

4. Performance Results. We study the strong scalability of the three orthogonaliza-
tion algorithms; Classical Gram-Schmidt with Reorthogonalization (CGS2) in Algorithm 3,
and Householder level 1 (HH lvl1) and level 2 (HH lvl2) in Algorithms 2 and 1, respectively.

The Level 2 HH code is called “5-synch” in the performance plots, and the Level 1 HH
code is called “many-synch”.

We first compare the performance of our C implementations of different orthogonaliza-
tion schemes in Section 4.1. We then compare the performance with our Trilinos implemen-
tations and with the Householder implementation in ScaLAPACK, specifically the routines
for a panel QR factorization, i.e., the QR factorization of a tall-skinny matrix (PDGEQR2
and PDORG2R).

4.1. Strong Parallel Scaling Studies with C code. Here, we evaluate the C im-
plementation of three orthogonalization algorithms, HH lvl1, HH lvl2 and CGS2. Refer to
Section A for details of the implementation of the code.

Figures 5.1 show the strong scalability of the C implementations, using three different
numbers of rows, i.e., m = 3, 000, 000, m = 20, 000, 000, and m = 50, 000, 000, respectively,
while the number of columns is fixed at n = 50. For each figure, the left plots shows the
performance (GFLOP/s) per node, while the right plots show the total time to compute
the QR factorization of a panel. The x-axes remains constant through all of these plots.
Which vary by number of nodes, starting with one node, moving to 256 nodes for the same
problem size. Each node on SkyBridge has 16 cores available. So in terms of cores we
evaluate using up to as many as 4096 cores. The y-axis for the performance plots represents
GFLOPs/second/node. To compare each method equally we set GFLOPs to 4mn2. The
y-axis for the time to solution plots is the total time for each run. Each method has an
associated dashed line that represents where the perfect scalability would be (given the
initial run on one node). The reason we provide both experiments side by side is, when we
start to lose performance per node, we have no idea how bad it can really get. Looking at
the timing results, we more clearly see how bad things can become as far as scalability. We
find it useful to have both plots side-by-side depending on the regime we are looking at.

We see that HH level 2 (cyan, “5-synch”) is parallel to CGS2, which is consistent in
each experiment. This is good and this is what we were expecting to observe. HH level 2
has a 20% FLOPs overhead with respect to CGS2 and so we clearly see this 20% overhead.
Otherwise the curves are somewhat similar and parallel. Although HH lvl1 perform a
similar number of FLOPs as CGS2, its performance relies on Level 1 BLAS kernels and
many synchronization, so the performance curve are quite different.
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We see a very strongly marked cache effect for all methods. Which leads to strong linear
speedup. We explain with HH lvl1 but this is true for all three methods. (And will also be
true for Trilinos and ScaLAPACK code.) Let us look at HH lvl1, the brown line, in the cases
m = 3, 000, 000, m = 20, 000, 000, and m = 50, 000, 000. For each case, on one node, HH
lvl1 starts between 5-10 GFLOPs per second per node. Of the three experiments there is a
similar performance boost. For plots 5.1 (the top two) the peak happens when moving from
one to two nodes. For plots 5.1 (the middle two plots) this begins starting after a run on four
nodes and for plots 5.1 (the bottom two) the performance boost occurs after a run on eight
nodes. Each of the peaks land approximately 20 GFLOPs per second per node. The reason
for this result is most likely a cache effect. Looking at the peaks, for m = 3 ∗ 106, with 2
nodes, each core gets 93,750 elements from each column and a matrix with n = 50 columns
with double precision number requires 572 MB of memory per core, for m = 20 ∗ 106, with
16 nodes, each core gets 78,125 elements and a matrix requires 572 MB of memory per core,
and, for m = 50 ∗ 106, with 64 nodes, each core gets approximately 48,828 elements and a
matrix requires 298 MB of memory per core. If we look at the scalability curves (the plots
on the right), each cache effect yields a superlinear speed up.

For m = 3, 000, 000, the peak for Level 2 (cyan, “5-synch”) and Level 1 (brown, “many-
synch”) are exactly at the same point which makes sense since they use the same number
of matrices. We have a harder time to interpret the peak across methods. CGS2 uses one
matrix. Indeed, the matrix of Q overwrites the matrix of A. This is somewhat akin with
Householder, where we have one input vector a, an input matrix V and, in output, V
gets augmented by one column and input a is transformed in q. So the memory footprint
of CGS2 and HH should be somewhat similar. Yet the peak (cache effect) happened at
quite different places. We do not have a good explanation for this. It is likely that our
implementation of HH needs to fit two matrices in cache (A/V and Q) to benefit from
cache effect, while CGS2 only needs to fit one matrix in cache (A/Q)) to benefit from cache
effect. Related to memory footprint, we also note that all codes have a third matrix that
holds a copy of A for checking purpose. We do not think this should impact cache effect,
but mention this in passing.

In the top plots of Figure 5.1 we see all three algorithms drop in performance as we
distribute across 256 nodes. When we evaluate the left plot to the corresponding right plot,
we see the loss in performance relates to the loss of scalability. When each method starts
to dip down in the performance plot, the trend in the time to solution increases showing
the problem becomes communication bound. For the second experiment (middle two plots),
we notice HH lvl2 and CGS2 scale perfectly but HH lvl1 does not. The two methods that
scale have a constant number of synchronizations per iteration where HH lvl1 is iteration
dependent.

Looking at the third experiment, we see that each method does not scale perfectly as
we increase to 256 nodes and that HH lvl1 and HH lvl2 follow similar paths. The reason
that each method has a similar time to solution is because the problem becomes FLOP
dependent. CGS2 and HH lvl1 both share approximately 4mn2 FLOPs and HH lvl2 about
5mn2. The extra demand of communication for HH lvl1 is why it follows more HH lvl2
versus CGS2. The dip for CGS2 on plot bottom left plot for 16 nodes is strange. This could
be noise and rerunning the experiment could remove the dip all together.

4.2. Strong Parallel Scaling Studies with Trilinos. When evaluating the perfor-
mance results in Trilinos (and ScaLAPACK) we see similar behavior. The same cache effect
that happened for HH lvl1 implemented in C occurs for the implementation within Trilinos.
There is a boost in performance and then when the problem becomes communication bound,
the scalability and performance is lost. HH lvl1 also shares the same trend in Trilinos as
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in C for the time to solution plots. A U-shape curve where we see super-linear speed up
caused by the cache effect, followed by an increase in timings because the method does not
scale.

We note that the performance of ScaLAPACK somewhat follows the Trilinos implemen-
tation for CGS2 and HH lvl2, and does not follow HH lvl1. ScaLAPACK does not use the
T -matrix. So how can ScaLAPACK have Level 2 performance without a T matrix? The
reason is that ScaLAPACK breaks our paradigm of “one-column-at-a-time”. ScaLAPACK
requires all n columns at once. And the algorithm of ScaLAPACK cannot be used in the
“one-column-at-a-time” framework. Since ScaLAPACK has all n columns at once, ScaLA-
PACK can implement a right-looking Level 2 algorithm without a T matrix. This is why the
performance of ScaLAPACK is closer to Level 2 than Level 1. In the “one-column-at-a-time”
framework, we must use a T matrix to enable Level 2 performance.

One thing to note - the C implementation scales for the methods that had constant
number of synchronizations per iteration, except for the experiment when m = 3 ∗ 106.
The m = 3 ∗ 106 problem is very small, and with a strong scaling experiment, we are really
reaching the limit of what can be done. For 4, 096 cores, each core has mloc = 733 entries per
vector and this is not much. We clearly see the effect of communication in this case. The C
implementation is lightweight, only calling MPI Allreduce when communication is needed,
so scales relatively well across the board. We observe that HH lvl2 and CGS2 implemented
in Trilinos as well as ScaLAPACK do not scale when using many processes. We think that
there could be an overhead when calling Trilinos and ScaLAPACK. But we could also be
doing something that is considered a bad usage within Trilinos, we are still trying to fully
understand this behavior. ScaLAPACK follows the same trend as Trilinos.

Also, note that for Trilinos HH lvl2 and HH lvl1 there is no data point at one node for
the experiment when m = 50 ∗ 106. This is because the algorithm requires an additional
mj in storage for the Multivector V as opposed to the Trilinos implementation of CGS2.
This additional storage demand resulted in there not being enough memory to distribute
the matrix across 16 cores.

5. Conclusions and Future Work. In this paper, we have studied the performance
of three different orthogonalization algorithms, two of which are based on Householder
orthogonalization. Our preliminary results indicate that each method performs more or less
as we would expect. As expected, HH lvl1 does not scale on any of the experiments presented
where the C implementation of HH lvl2 and CGS2 does indeed scale. There appears to be
some overhead using Trilinos and ScaLAPACK. We observe super-linear speed up at times.
The main difference in terms of performance between HH lvl2 and CGS2 seems to be the
fact that HH lvel2 performs 20% more FLOPS than CGS2.

We are currently working on reducing the number of FLOPS for HH Level 2 and reducing
the number of synchronizations. The computation required to construct a column in T is
used in the construction of the same column in Q. We can reuse this computation and
save 2(m/p)j FLOPs at each iteration, as well as reduce one communication. This would
put the highest demanding term for FLOPs of HH lvl2 to be the same as CGS2. But we
do not want to stop there. Within C we have a version of HH lvl2 that requires only two
synchronizations per iteration. It also has the reduced FLOPs implemented. There is some
struggle on the Trilinos side. In C, we are able to manipulate values before an All Reduce
occurs. Trilinos, on the other hand, takes care of all MPI processes for us. So we cannot
manipulate values prior. There still might be a way to achieve two synchronizations per
iteration using Householder within Trilinos, this is the direction we are moving now.

Our plan for future work is to implement the low-synch reduced-FLOPs Householder
algorithim within Trilinos for use by solvers. We were able to create a reduced FLOPs
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version (before we ran into the issue of not scaling - refer to Appendix A for struggles
in constructing the algorithm within Trilinos) but the reduction of FLOPs by reusing the
computation required an added broadcast so we did not reduce a communication. We
are working on finding a way to broadcast these elements when we broadcast the column
in R after updating. We also have a 1-synch CGS2 algorithm in MPI+C that we want to
implement and study in the framework of Trilinos. Also, we want to study all these algorithm
in the GPU setting. Indeed we have not yet noticed much improvement by reducing the
number of synchronizations. We believe that, by exploiting GPUs, we will better illustrate
why reducing the number of synchronization of an algorithm is important.

Finally, all this work has been focused on “one-column-at-a-time”, but we really want to
extend the work to “many-columns-at-a-time”. This should not be too hard, this should be
very satisfying and provide good speedup, we believe that the use of Householder (as opposed
to Gram-Schmidt) in the “many-columns-at-a-time” is even more justified and we are looking
forward to be able to move in this direction. The “many-columns-at-a-time” has direct
application in the context of block iterative methods, in particular for eigendecomposition
or singular value decomposition, and in the context of s-step methods [3].
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Appendix A. Implementation.
We have various versions which we compare against. The orthogonalization schemes

used within this paper are the two Householder algorithms (Level 1 and Level 2) and the
Classical Gram Schmidt algorithm with Reorthognalization. For HH lvl1, HH lvl2 and CGS2
we have one algorithm built in the framework of Trilinos, one built in C using BLAS oper-
ations and MPI. In addition we compare to ScaLAPACK’s implementation of Householder
using PDGEQR2 and PDORG2R.

A.1. Implementing Householder within C. The goal of the C implementation is
to have lightweight, easy to read and understand, portable code. We believe we succeeed
in these goals. We started the C implementation first, and then moved on to a Trilinos
implementation. The C implementation is a good point of reference for timing comparison
and scalability, it is hard to do a more lightweight code. We directly acces BLAS, LAPACK
and MPI and the structure of the vectors is as simple as it can be and native to C. The issue
with the C implementation is that (1) we do not have many matrix-vector products imple-
mented for Arnoldi expansion (only one), (2) we do not have preconditioner implemented,
and (3) we do not have GPU implementation, and, in general, we will be very limited with
hetereogeneous computing and handling a mix of MPI processes, CPU threads and GPU
computing, right now the parallelism is only MPI-based. A Trilinos implementation should
solve these three limitations and enable more interesting experiments. That being said the
lightweight C code is a good point of reference, also some readers might find a C code more
useful than a Trilinos code to replicate our work.
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For C we use BLAS operations - DTRMV, DGEMV, DDOT, DAXPY. The difference between
versions of Householder, HH Level 1 uses DAXPY for the projection step and HH Level 2
uses DGEMV for these steps.

To make the code parallel, we add MPI processes during the five main steps of the
algorithm. Meaning when we first update we call DGEMV (for HH Level 2) for the operation
VT

1:m,1:j−1A1:m,j . Then this is followed by an MPI ALLreduce with a volume of j − 1. HH
Level 1 does that operation j − 1 times (once per Householder reflection) using the DAXPY
and has an MPI Allreduce each time with a volume of size 1.

The C implementation also takes advantage of the structure from using Householder
reflections. One way we simplify this within the C implementation, we assume the factor-
ization is never too large and that we are working on tall-skinny matrices. If that is the
case, the upper triangular block of V, will always live on process zero which allows for easy
manipulation. Before each operation we have one if else statement to separate the dense
operations from the one with structure. Meaning we check if we are on process zero or not.
If we are on process zero, we do a DTRMV on the top square block and then a DGEMV on the
lower rectangular block. If the process is not process zero, then it just does DGEMV using
the size of its local m.

A.2. Implementing Householder within Trilinos. Implementing Householder (Level
1 and Level 2) follows a similar design as for Trilinos. The objects needed for the algorithm
remain the same, the steps within the algorithm are the same. What is different is the
functions we use. The algorithms made in the framework of Trilinos is built using Tpetra
and Belos MultiVector traits. The main objects for the algorithms are SerialDense matrices
and MultiVectors.

While working to implement the Householder algorithm (Algorithm 1) in Trilinos, ob-
stacles occurred and lessons were learned. After constructing the algorithm using Tpetra
traits, we began testing and, through some strong scalability experiments, we found that
the implementation did not scale.

There is structure within the Householder algorithm that one can exploit. The imple-
mentation of Householder in C exploits this structure and it is how we initially began coding
HH lvl2 in Trilinos. But to accomplish this requires additional steps in Trilinos compared
to in C. Because V is unit-lower triangular we can in general offset DGEMV operations to
apply only to the lower rectangular block. Then we can use DTRMV to achieve a triangular
solve and add the two operations to avoid computing floating point operations on zeros and
ones. (And to avoid storing these zeros and ones.) In Trilinos though, offset-ing on the rows
of MultiVectors is more difficult than to offset on columns. Let us start from the beginning
so we can understand what struggles led to this version that is not scalable.

At the beginning, we started this endeavor using Belos only functions and constructed
each matrix as a SerialDense matrix. After this was set up correctly and the algorithm
could do the QR factorization on an arbitrary dense matrix, we evaluated how to transition
the tall and skinny matrices to MultiVectors (V,Q,A). The issue with only using Belos
traits, in order to do the Householder Level 1 and 2 algorithms we need to access elements in
these vectors. At this point we realized we needed to transition from Belos specific to using
the Tpetra MultiVector traits, where this functionality existed. From our understanding,
Kokkos objects are not compatible with the Tpetra functions.

The three main functions in Belos used to project and normalize are MvTransMv,
MvTimesMatAddMv and MvDot. We also use the BLAS operation DTRMV when applying
the T factor. As mentioned in the algorithm section, to update the incoming column cor-
rectly we need to offset two MultiVectors (the first j − 1 columns in V and the the jth

column of A - the column ready to be updated). This is easily accomplished using the
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Teuchos Range1D function to get a range of columns to grab and using the Belos trait
CloneViewNonConst to clone the column(s) we want. Because of this to correctly use V ,
we need either to be able to use DTRMV with a MultiVector by offsetting in row-space or
we need to explicitly put zeros in the upper-triangular part of V and one’s on the diagonal.
The BLAS function DTRMV is not compatible with a MultiVector object so that is out of the
question. Because of this we could not implement the offset in the row-space and use DTRMV.
There is one other way to work around this though. We can broadcast the lower-triangular
region and store it underneath the R factor. Then it is stored in a SerialDense matrix and
still could be a useful way to do the factorization. This is what we began to work on.

We found in order to offset in the rows of a MultiVector we need to create a submap.
Creating a submap at each iteration is not scalable. What we did, each process needs to
know the start of their world. Meaning at what point in the row of a given MultiVector
does that specific core hold, each core needs to know the start and end of their own worlds.
Then we can offset to the lower rectangular block on V and have the top square - the lower
triangular part in a SerialDense matrix. The downside is at iteration j we need to create
a submap that points to the j + 1st element through m, for both the j − 1 Householder
reflections and the column about to updated. The issue becomes, we also need to update the
top j elements so we can correctly construct and broadcast the new column being appended
to R.

Initially we did not know the creation of the submaps was not scalable. So we did this
twice each iteration in the HH lvl2 algorithm. Which allowed us to offset in the rows of a
MultiVector and exploit some of the structure the Householder algorithm provides. When
doing the performance results we saw that the algorithm did scale so timed each component
separately and this is where we found what we needed to remove. But to remove this also
forced us to do operations on a full block and ignore the structure.

Now we set the diagonal in V to 1 and the elements above to 0. But before we change
these elements we broadcast the j elements to every process. To do this in Trilinos we
CloneCopy the jth column and use the doImport function which allows each process to gain
access and use getLocalViewHost so we can copy these elements out of a MultiVector into a
SerialDense object. The change that allowed us to remove the creation of a submap at each
iteration was to put it outside of the loop. We do need to know the size of the factorization
for the panel, because before we begin the loop of orthogonalization we create one submap
that is of size n and pulls the entier j × n block when we broadcast. We only access the jth

column of this broadcasted block though.

Appendix B. Matlab Implementation.
Here we provide Matlab code that does each algorithm presented, Householder Level

1, Householder Level 2 and Classical Gram-Schmidt with Reorthogonalization. We, in
addition, provide a driver for each algorithm. One can copy and paste these as .m files, you
only need to uncomment one and exactly only one line associated with the method you want
to use in the main. The kind of interface is convenient for an orthogonalization toolbox and
it is for example convenient to build an iterative solver around this interface.

Appendix C. Additional Plots Using Data from Plots Presented.

Appendix D. Pseudocodes.
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Algorithm 1 Householder Orthogonalization Level Two (HH lvl2) Algorithm.

1: for (j = 1; j <= n; j + +) do
2: v = aj
3: if (j > 1) then
4: work = V T1:m.,1:j−1v

5: work = TT1:j−1,1:j−1work
6: v = v −V1:m.,1:j−1work
7: end if
8: α = vTj+1:mvj+1:m

9: β =
√
α+ v2

j

10: γ = vj + β ∗ sign(vj)
11: R1:j−1,j = v1:j−1

12: Rj,j = −β ∗ sign(γ)
13: Tj,j = τj = 2

1+(α/γ2)

14: Vj+1:m,j = 1
γvj+1:m

15: Vj,j = 1.0
16: V1:j−1,j = 0.0
17: Qj+1:m,j = −τj ∗ vj+1:m

18: Qj,j = 1− τj
19: Q1:j−1,j = 0.0
20: if (j > 1) then
21: work = VT

1:m.,1:j−1Q1:m,j

22: work = T1:j−1,1:j−1work
23: Q1:m,j = Q1:m,j −V1:m.,1:j−1work
24: T1:j−1,j = VT

1:m,1:j−1V1:m,j

25: T1:j−1,j = −τj ∗ T1:j−1,j

26: T1:j−1,j = T1:j−1,1:j−1 ∗ T1:j−1,j

27: end if
28: end for
Note: The workspace (Work), one can use T1:j−1,j as the workspace needed per iteration
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Fig. 5.1: Strong scalability experiment with number of rows varied, m = 3, 000, 000 (top),
m = 20, 000, 000 (middle), m = 50, 000, 000 (bottom).
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Fig. 5.2: Strong scalability experiment with number of rows varied, m = 3, 000, 000 (top),
m = 20, 000, 000 (middle), m = 50, 000, 000 (bottom).
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%
   clear
%
   m = 15;
   n = 5;
   log10KA = 10;
%
   U = randn(m,n); [U,~]=qr(U,0);
   V = randn(n,n); [V,~]=qr(V,0);
   S = diag( 10.^( linspace( 0, log10KA, n ) ) );
   A = U * S * V';
   clear U S V;
%
   Q   = zeros(m,n);
   R   = zeros(n,n);
   V   = zeros(m,n);
   T   = zeros(n,n);
   tau = zeros(n,1);
%
   for j = 1:n,
%
%      [ Q(1:m,j), R(1:j,j) ] = ...
%      orth_cgs2( Q(1:m,1:j-1), A(1:m,j) );
%
%      [ V(1:m,j), tau, R(1:j,j), Q(1:m,j) ] = ...
%      orth_hh_lvl1( V(1:m,1:j-1), tau, A(1:m,j) );
%
%      [ V(1:m,j), R(1:j,j), T(1:j,j), Q(1:m,j) ] = ...
%      orth_hh_lvl2( V(1:m,1:j-1), T(1:j-1,1:j-1), A(1:m,j) );
%
   end
%
   orth = norm(eye(n) - Q'*Q, 'fro');
   repres = norm( A - Q * R, 'fro') / norm( A, 'fro' );
   fprintf('|| I - Q''* Q ||           = %6.1e\n', orth );
   fprintf('|| A - Q * R || / || A || = %6.1e\n', repres );
%

Fig. B.1: Main Driver for the Following Functions
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%
   function [ v, r, t, q ] = orth_hh_lvl2( V, T, a )
%
      m = size(V,1);
      j = size(V,2)+1;
%
      q = zeros(m,1);
      r = zeros(j,1);
      t = zeros(j,1);
%
      if (j > 1 )
      r(1:j-1,1) = V(1:m,1:j-1)' * a(1:m,1);         %%%%%%%%% <- 1 synchronization 
      r(1:j-1,1) = T(1:j-1,1:j-1)' * r(1:j-1,1);
      a(1:m,1) = a(1:m,1) - V(1:m,1:j-1) * r(1:j-1,1);
%
      r(1:j-1,1) = a(1:j-1,1);                       %%%%%%%%% <- 1 broadcast
      end
%
      normx = norm( a(j+1:m,1) , 2);                 %%%%%%%%% <- 2 synchronizations
      norma = sqrt( normx*normx +  a(j,1)*a(j,1) );
      if ( a(j,1) > 0.0e+00 ) v(j,1) = a(j,1)+norma; else v(j,1) = a(j,1)-norma; end
      v(j+1:m,1) = a(j+1:m,1) / v(j,1);
      if ( a(j,1) > 0.0e+00 ) r(j,1) = - norma; else r(j,1) = norma; end
      tau = 2.0e+00 / ( 1.0e+00 + ( normx / v(j,1) )^2 );
      v(j,1) = 1.0e+00;
      v(1:j-1,1) = 0.0e+00;
%
      q(j,1) = - tau;
      q(j+1:m,1) = v(j+1:m,1) * q(j,1) ;
      q(j,1) = 1.0e+00 + q(j,1) ;
      if (j > 1 )
      q(1:j-1,1) = 0.e+00;
      t(1:j-1,1) = V(1:m,1:j-1)' * q(1:m,1) ;        %%%%%%%%% <- 3 synchronizations
      t(1:j-1,1) = T(1:j-1,1:j-1) * t(1:j-1,1) ;
      q(1:m,1) = q(1:m,1) - V(1:m,1:j-1) * t(1:j-1,1) ;
      end
%
      if (j > 1 )
      t(1:j-1,1) = V(1:m,1:j-1)' * v(1:m,1);         %%%%%%%%% <- 4 synchronizations 
      t(1:j-1,1) = -t(1:j-1,1) * tau;
      t(1:j-1,1) = T(1:j-1,1:j-1) * t(1:j-1,1);
      end
      t(j,1) = tau;
%
   end
%

Fig. B.2: Householder Level 2 Orthogonalization implemented within Matlab
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%
   function [ a, tau, r, q ] = orth_hh_lvl1( V, tau, a )
%  
      m = size(V,1);
      j = size(V,2)+1;
%
      r = zeros(j,1);
      q = zeros(m,1);
%
      for i = 1:j-1,
         alpha = tau(i) * ( V(i:m,i)' * a(i:m,1) ); %%%%%%%%% <- 1 synchronization 
         a(i:m,1) = a(i:m,1) - V(i:m,i) * alpha;    %%%%%%%%%    j-1 each call
      end
%
      if (j>1), r(1:j-1,1) = a(1:j-1,1); end;       %%%%%%%%% <- broadcast here
%
      normx = norm( a(j+1:m,1), 2);                 %%%%%%%%% <- 1 synchronization
      norma = sqrt( normx*normx +  a(j,1)*a(j,1) );
      if ( a(j,1) > 0.0e+00 ) r(j,1) = - norma; else r(j,1) = norma; end
      if ( a(j,1) > 0.0e+00 ) a(j,1) = a(j,1)+norma; else a(j,1) = a(j,1)-norma; end
      a(j+1:m,1) = a(j+1:m,1) / a(j,1);
      tau(j) = 2.0e+00 / ( 1.0e+00 + ( normx / a(j,1) )^2 );
      a(1:j-1,1) = 0.0e+00;
      a(j,1) = 1.0e+00;
%
      q(j,1) = - tau(j);
      q(j+1:m,1) = a(j+1:m,1) * q(j,1);
      q(j,1) = 1.0e+00 + q(j,1);
      for i = j-1:-1:1,
        q(i,1) = - tau(i) * ( V(i+1:m,i)' * q(i+1:m,1) ); %%%%% <- 1 synchronization 
        q(i+1:m,1) = q(i+1:m,1) + V(i+1:m,i) * q(i,1);    %%%%%    j-1 each call
      end
%
   end

Fig. B.3: Householder Level 1 Orthogonalization implemented within Matlab

%
   function [ q, r ] = orth_cgs2( Q, a )
%  
      m = size(Q,1);
      j = size(Q,2)+1;
%
      r = zeros(j,1);
      h = zeros(j,1);
      q = zeros(m,1);
%
      r(1:j-1,1) = Q(1:m,1:j-1)' * a(1:m,1);    %%%%%%%%% <- 1st synchronization
      q(1:m,1) = a(1:m,1) - Q(1:m,1:j-1) * r(1:j-1,1);
%
      h(1:j-1,1) = Q(1:m,1:j-1)' * q(1:m,1);    %%%%%%%%% <- 2nd synchronization
      q(1:m,1) = q(1:m,1) - Q(1:m,1:j-1) * h(1:j-1,1);
%
      r(1:j-1,1) = r(1:j-1,1) + h(1:j-1,1);
%
      r(j,1) = norm( q(1:m,1) );                %%%%%%%%% <- 3rd synchronization
      q(1:m,1) = q(1:m,1) / r(j,1);
%
   end
%

Fig. B.4: Classical Gram-Schmidt Re-Orthogonalized implemented within Matlab
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Fig. C.1: Scalability and performance plots using Householder many-synch orthogonaliza-
tion scheme.
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Fig. C.2: Scalability and performance plots using Householder five-synch orthogonalization
scheme.
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Fig. C.3: Scalability and performance plots using CGS2 three-synch orthogonalization
scheme.
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Fig. C.4: Scalability and performance plots using all orthognoalization schemes. Note -
dashed lines represent perfect scalability of each method. We remove them from the legend
to not overcrowd it, each perfect scalability line matches the color of its recorded data.
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Algorithm 2 Householder Orthogonalization Level One (HH lvl1) Algorithm.

1: for (j = 1; j <= n; j + +) do
2: v = aj
3: for (i = 1; i <= j − 1; i+ +) do
4: work = VT

1:m,iv
5: work = work ∗ τi
6: v = v −V1:m,i ∗ work
7: end for
8: α = vj+1:mvTj+1:m

9: β =
√
α+ v2

j

10: γ = vj + β ∗ sign(vj)
11: τj = 2

1+(α/γ2)

12: R1:j−1,j = v1:j−1

13: Rj,j = −β ∗ sign(γ)
14: Vj+1:m,j = 1

γvj+1:m

15: Vj,j = 1.0
16: V1:j−1,j = 0.0
17: Qj+1:m,j = −vj+1:m ∗ τj
18: Qj,j = 1.0− τj
19: Q1:j−1,j = 0.0
20: for (i = j − 1; i >= 1; i−−) do
21: work = VT

1:m,iQ1:m,j

22: work = work ∗ τi
23: Q1:m,j = Q1:m,j −V1:m,i ∗ work
24: end for
25: end for

Algorithm 3 Classical Gram Schmidt Re-Orthogonalized (CGS2) Algorithm.

1: if (j == 1) then
2: r1,1 = ‖a1‖
3: Q1 = a1

r1,1

4: end if
5: for (j = 2; j <= n; j + +) do
6: h1:j−1,j = QT

j−1aj
7: wj = aj −Qj−1h1:j−1,j

8: t1:j−1,j = QT
1:j−1wj

9: uj = wj −Qj−1t1:j−1,j

10: r1:j−1,j = h1:j−1,j + t1:j−1,j

11: rj,j = ||uj ||
12: qj =

uj

rj,j

13: end for
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DISTRIBUTED MEMORY GRAPH COLORING ALGORITHMS ON
MULTIPLE GPUS

IAN BOGLE∗, ERIK G. BOMAN† , KAREN DEVINE‡ , SIVASANKARAN RAJAMANICKAM§ ,

AND GEORGE M. SLOTA¶

Abstract. Graph coloring is often used in parallelizing scientific computations that run in distributed
and multi-GPU environments; it identifies sets of independent data that can be updated in parallel. Many
algorithms exist for graph coloring on a single GPU or in distributed memory, but hybrid MPI+GPU algo-
rithms have been unexplored until this work, to the best of our knowledge. We present several MPI+GPU
coloring approaches that use implementations of the distributed coloring algorithms of Gebremedhin et al.
and the shared-memory algorithms of Deveci et al. The on-node parallel coloring uses implementations in
KokkosKernels, which provide parallelization for both multicore CPUs and GPUs. We further extend our
approaches to solve for distance-2 coloring, giving the first known distributed and multi-GPU algorithm for
this problem. In addition, we propose novel methods to reduce communication in distributed graph coloring.
Our experiments show that our approaches operate efficiently on inputs too large to fit on a single GPU
and scale up to graphs with 76.7 billion edges running on 128 GPUs.

1. Introduction. This work will appear in the proceedings of the IAˆ3 workshop at
SC20 [4].We present new multi-GPU, distributed memory implementations of distance-1
and distance-2 graph coloring. Distance-1 graph coloring assigns colors (i.e., labels) to all
vertices in a graph such that no two neighboring vertices have the same color. Similarly,
distance-2 coloring assigns colors such that no vertices within two hops, also called a “two-
hop neighborhood,” have the same color. Usually, these problems are formulated as NP-
hard optimization problems, where the number of colors used to fully color a graph is
minimized. Serial heuristic algorithms have traditionally been used to solve these problems,
one of the most notable being the DSatur algorithm of Brélaz [7]. More recently, parallel
algorithms [11, 6] have been proposed; usually requiring multiple rounds to correct for
improper speculative colorings produced in multi-threaded or distributed environments.

There are many useful applications of graph coloring. Most commonly, it is employed
to find concurrency in parallel scientific computations [11, 3]; all data sharing a color can
be updated in parallel without incurring race conditions. Other applications use coloring
as a preprocessing step to speed up the computation of Jacobian and Hessian matrices [16]
and to identify short circuits in printed circuit designs [14]. Despite the intractability of
minimizing the number of colors for non-trivial graphs, such applications benefit from good
heuristic algorithms that produce small numbers of colors. For instance, Deveci et al. [11]
show that a smaller number of colors used by a coloring-based preconditioner reduces the
runtime of a conjugate gradient solver by 33%.

In particular, this work is motivated by the use of graph coloring as a preprocessing
step for distributed scientific computations such as automatic differentiation [17]. For such
applications, assembling the associated graphs on a single node to run a sequential coloring
algorithm may not be feasible [6]. As such, we focus on running our algorithms on the
parallel architectures used by the underlying applications. These architectures typically are
highly distributed, with multiple CPUs and/or GPUs per node. Therefore, we specifically
consider coloring algorithms that can use the “MPI+X” paradigm, where “X” is multicore
CPU or GPU acceleration.

∗Rensselaer Polytechnic Institute, boglei@rpi.edu
†Sandia National Laboratories, egboman@sandia.gov
‡Sandia National Laboratories,kddevin@sandia.gov
§Sandia National Laboratories, srajama@sandia.gov
¶Rensselaer Polytechnic Institute, slotag@rpi.edu
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1.1. Contributions. We present and examine two MPI+X implementations of distance-
1 coloring as well as one MPI+X implementation of distance-2 coloring. In order to run on
a wide variety of architectures, we use the Kokkos performance portability framework [13, 1]
for on-node parallelism and Trilinos [19] for distributed MPI-based parallelism. The com-
bination of Kokkos and MPI allows our algorithms to run on multiple multicore CPUs or
multiple GPUs in a system. However, for this paper, we focus on the performance of our
algorithms in MPI+GPU environments. For distance-1 coloring of real-world networks, our
algorithms see up to 28x speedup on 128 GPUs compared to a single GPU, and only a 7.5%
increase in colors on average. For distance-2 coloring, our algorithm also sees up to 28x
speedup, and a 4.9% increase in colors in the worst case. We also demonstrate good weak
scaling behavior on up to 128 GPUs on graphs with up to 12.8 billion vertices and 76.7
billion edges in size.

2. Background.

2.1. Coloring Problem . While there exist many definitions of the “graph coloring
problem,” we specifically consider variants of distance-1 and distance-2 coloring. Consider
graph G = (V,E) with vertex set V and edge set E. Distance-1 coloring assigns to each
vertex v ∈ V a color C(v) such that ∀(u, v) ∈ E,C(u) 6= C(v). In distance-2 coloring, colors
are assigned such that ∀(u, v), (v, w) ∈ E,C(u) 6= C(v) 6= C(w); i.e., all vertices within
two hops of each other have different colors. When a coloring satisfies one of the above
constraints, it is called proper. The goal is to find proper colorings of G such that the total
number of different colors used is minimized.

2.2. Coloring Background. While minimizing the number of colors is NP-hard, se-
rial coloring algorithms using greedy heuristics have been effective for many applications [15].
The serial greedy algorithm in Algorithm 1 colors vertices one at a time. Colors are repre-
sented by integers, and the smallest usable color is assigned as a vertex’s color. Most serial
and parallel coloring algorithms use some variation of greedy coloring, with algorithmic dif-
ferences usually involving the processing order of vertices or, in parallel, the handling of
conflicts and communication.

Algorithm 1 Serial greedy coloring algorithm

procedure SerialGreedy(Graph G = (V,E))
C(∀v ∈ V )← 0 . Initialize all colors as null
for all v ∈ V in some order do

c← the smallest color not used by a neighbor of v
C(v)← c

Conflicts in a coloring are edges that violate the color-assignment criterion; for example,
in distance-1 coloring, a conflict is an edge with both endpoints sharing the same color.
Colorings that contain conflicts are not proper colorings, and are referred to as pseudo-
colorings. Pseudo-colorings arise only in parallel coloring, as conflicts arise only when two
vertices are colored concurrently. A coloring’s “quality” refers to the number of colors used;
higher quality colorings of a graph G use fewer colors, while lower quality colorings of G use
more colors.

2.3. Parallel Coloring Algorithms. There are two popular approaches to parallel
graph coloring. The first concurrently finds independent sets of vertices and concurrently
colors all of the vertices in each set; this approach was used by Jones and Plassmann [21].
Osama et al. [23] implement approaches based on finding independent sets on a single GPU
and explore the impact of varying the baseline independent set algorithm.
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The second approach, referred to as “speculate and iterate” [9], colors as many vertices
as possible in parallel and then iteratively fixes conflicts in the resulting pseudo-coloring
until no conflicts remain. Çatalyürek et al. [9] and Rokos et al. [24] present shared-memory
implementations based on the speculate and iterate approach. Deveci et al. [11] present
implementations based on the speculate and iterate approach that are scalable on GPUs.
Distributed-memory algorithms such as those in [6, 26] use the speculate and iterate ap-
proach. Grosset et al. [18] present a hybrid speculate and iterate approach that splits
computations between the CPU and a single GPU, but does not operate on multiple GPUs
in a distributed memory context. Bozdağ et al. [6] showed that, in distributed memory, the
speculative approach is more scalable than methods based on the independent set approach
of Jones and Plassmann. As such, we choose a speculative and iterative approach with our
algorithms.

2.4. Distributed Coloring. In a typical distributed memory setting, an input graph
is split into subgraphs that are assigned to separate processes. A process’s local graph
Gl = {Vl + Vg, El + Eg} is the subgraph assigned to the process. Its vertex set Vl contains
local vertices, and a process is said to own its local vertices. The intersection of all processes’
Vl is null, and the union equals V . The local graph also has non-local vertex set Vg, with
such non-local vertices commonly referred to as ghost vertices; these vertices are copies of
vertices owned by other processes. To ensure a proper coloring, each process needs to store
color state information for both local vertices and ghost vertices; typically, ghost vertices are
treated as read-only. The local graph contains edge set El, edges between local vertices, and
Eg, edges containing at least one ghost vertex as an endpoint. Bozdağ et al. [6] also defines
two subsets of local vertices: boundary vertices and interior vertices. Boundary vertices are
locally owned vertices that share an edge with at least one ghost; interior vertices are locally
owned vertices that do not neighbor ghosts. For processes to communicate colors associated
with their local vertices, each vertex has a unique global identifier (GID).

3. Methods. We present three hybrid MPI+GPU algorithms, called Distance-1 (D1),
Distance-1 Two Ghost Layer (D1-2GL) and Distance-2 (D2). D1 and D1-2GL solve the
distance-1 coloring problem and D2 does distance-2 coloring. We leverage Trilinos [19] for
distributed MPI-based parallelism and Kokkos [13] for on-node parallelism. KokkosKer-
nels [1] provides baseline implementations of distance-1 and distance-2 coloring algorithms
that we use and modify for our local coloring and recoloring subroutines.

Our three proposed algorithms follow the same basic framework, which builds upon that
of Bozdağ et al. [6]. Bozdağ et al. observe that interior vertices can be properly colored
independently on each process without creating conflicts or requiring communication. They
propose first coloring interior vertices, and then coloring boundary vertices in small batches
over multiple rounds involving communication between processes. This approach can reduce
the occurrence of conflicts, which in turn reduces the amount of communication necessary
to properly color the boundary. In our approach, we color all local vertices first. Then we
fix all conflicts after communication of boundary vertices’ colors. Several rounds of conflict
resolution and communication may be needed to resolve all conflicts. We found that this
approach was generally faster than the batched boundary coloring, and it allowed us to use
existing parallel coloring routines in KokkosKernels without substantial modification.

Algorithm 2 demonstrates the general approach for our three speculative distributed
algorithms. First, each process colors all local vertices with a shared-memory algorithm.
Then, each process communicates its boundary vertices’ colors to processes with correspond-
ing ghosts. Processes detect conflicts in a globally consistent way and remove the colors of
conflicted vertices. Finally, processes locally recolor all uncolored vertices, communicate
updates, detect conflicts, and repeat until no conflicts are found.
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Algorithm 2 Distributed-Memory Speculative Coloring

procedure Parallel-Color(Graph G = (V,E))
Color all local vertices
Communicate colors of boundary vertices
do

Detect conflicts
Recolor conflicting vertices
Communicate updated boundary colors

while Conflicts exist

3.1. Distance-1 Coloring (D1). Our D1 method begins by independently coloring
all owned vertices on each process using the GPU-enabled algorithms by Deveci et al. [11]
VB BIT and EB BIT in KokkosKernels [1]. VB BIT uses vertex-based parallelism; each
vertex is colored by a single thread. VB BIT uses compact bit-based representations of
colors to make it performant on GPUs. EB BIT uses edge-based parallelism; a thread
colors the endpoints of a single edge. EB BIT also uses the compact color representation to
reduce memory usage on GPUs.

For graphs with skewed degree distribution (e.g., social networks), edge-based paral-
lelism typically yields better workload balance between GPU threads. We observed that
for graphs with a sufficiently large maximum degree, edge-based EB BIT outperformed
vertex-based VB BIT on Tesla V100 GPUs. Therefore, we use a simple heuristic based
on maximum degree: we use EB BIT for graphs with maximum degree greater than 6000;
otherwise, we use VB BIT.

Algorithm 3 Algorithm to identify and resolve conflicts

procedure Check-Conflicts(v, u, colors, GID)
conflict ← 0
if colors[v] = colors[u] then

if rand(GID[v]) > rand(GID[u]) then
colors[v] ← 0

else if rand(GID[u]) > rand(GID[v]) then
colors[u] ← 0

else
if GID[v] > GID[n] then

colors[v] ← 0
else

colors[u] ← 0

conflict ← 1
return conflict

Algorithm 4 shows the conflict-resolution inner loop of Algorithm 2. This algorithm
runs on each process using its owned local graph Gl. It detects conflicts across processor
boundaries and recolors vertices to resolve the conflicts.

After the initial coloring, only boundary vertices can be in conflict with one another1.
We perform a full exchange of boundary vertices’ colors using Trilinos [19]. Specifically, we

1As suggested by Bozdağ et al., we considered reordering local vertices to group all boundary vertices
together for ease of processing. This optimization did not show benefit in our implementation, as reordering
tended to be slower than coloring of the entire local graph.
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Algorithm 4 Distance-1 conflict resolution and recoloring

procedure Resolve-Conflicts(
Local Graph Gl = {Vl + Vg, El + Eg}, colors, GID)
conflicts ← 0
for all v ∈ Vg do in parallel

for all 〈v, u〉 ∈ (Eg) do
conflicts ← conflicts + Check-Conflicts(v, u, . . .)
if colors[v] = 0 then

break
Allreduce(conflicts, SUM) . Get global conflicts
gc ← current colors of all ghosts
if conflicts > 0 then

colors = Color(Gl, colors) . Recolor vertices
Replace ghost colors with gc
Communicate recolored vertices to ghost copies

return conflicts

use the FEMultiVector class of Tpetra [20] to communicate the colors of boundary vertices
to their ghost copies on other processes via an all-to-all exchange. After the initial all-to-all
exchange, we only communicate the colors of boundary vertices which have been recolored.
After each process receives its ghosts’ colors, it detects conflicts by checking each owned
vertex’s color against the colors of its neighbor as in Algorithm 4. The conflict detection is
done in parallel over the owned vertices using Kokkos. The overall time of conflict detection
is small enough that any imbalance resulting from our use of vertex-based parallelism is
insignificant relative to end-to-end times for the D1 algorithm.

When a conflict is found, only one vertex involved in the conflict needs to be recolored.
Since conflicts happen on edges between two processes’ vertices, both processes must agree
on which vertex will be recolored. We adopt the random conflict resolution scheme of Bozdağ
et al. We use a random number generator (given as the “rand” function in Algorithm 3)
seeded by the GID of each conflicted vertex, as this produces a consistent set of random
numbers across processes without communication. In a conflict, the vertex with the larger
random number is chosen for recoloring. For the rare case in which both random numbers
are equal, the tie is broken based on GID. Using random numbers instead of simply using
GIDs helps balance recoloring workload across processes.

Once we have identified all conflicts, we again use VB BIT or EB BIT to recolor the
determined set of conflicting vertices. We modified KokkosKernels’ coloring implementations
to accept a “partial” coloring and the full local graph, including ghosts. (Our initial coloring
phase did not need ghost information.) We also modified VB BIT to accept a list of vertices
to be recolored. Such a modification was not feasible for EB BIT.

Before we detect conflicts and recolor vertices, we save a copy of the ghosts’ colors (gc
in Algorithm 4). Then we give color zero to all vertices that will be recolored; our coloring
functions interpret color zero as uncolored. To prevent the coloring functions from resolving
conflicts without respecting our conflict resolution rules (thus preventing convergence of
our parallel coloring), we allow a process to temporarily recolor some ghosts, even though
the process does not have enough color information to correctly recolor them. The ghosts’
colors are then restored to their original values in order to keep ghosts’ colors consistent
with their owning process. Then, we communicate only recolored owned vertices, ensuring
that recoloring changes only owned vertices.
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Table 3.1: Summary of input graphs. δavg refers to average degree and δmax refers to
maximum degree. Numeric values listed are after preprocessing to remove multi-edges and
self-loops. k = thousand, M = million, B = billion.

Graph Class #Vertices #Edges δavg δmax Memory (GB)
ldoor PDE Problem 0.9 M 21 M 45 77 0.32

Audikw 1 PDE Problem 0.9 M 39 M 81 345 0.59
Bump 2911 PDE Problem 2.9 M 63 M 43 194 0.96
Queen 4147 PDE Problem 4.1 M 163 M 78 89 2.5

soc-LiveJournal1 Social Network 4.8 M 43 M 18 20 k 0.67
hollywood-2009 Social Network 1.1 M 57 M 99 12 k 0.86

twitter7 Social Network 42 M 1.4 B 35 2.9 M 21
com-Friendster Social Network 66 M 1.8 B 55 5.2 k 27

europe osm Road Network 51 M 54 M 2.1 13 1.2
indochina-2004 Web Graph 7.4 M 194 M 26 256 k 2.9

MOLIERE 2016 Document Mining 30 M 3.3 B 80 2.1 M 49
rgg n 2 24 s0 Synthetic Graph 17 M 133 M 15 40 2.1

kron g500-logn21 Synthetic Graph 2.0 M 182 M 87 8.7 2.7
mycielskian19 Synthetic Graph 393 k 452 M 2.3 k 196 k 6.7
mycielskian20 Synthetic Graph 786 k 1.4 B 3.4 k 393 k 21

3.2. Two Ghost Layers Coloring (D1-2GL). Our second distance-1 coloring al-
gorithm, D1-2GL, follows the D1 method, but adds another ghost vertex “layer” to the
subgraphs on each process. In D1, a process’ subgraph does not include neighbors of ghost
vertices unless those neighbors are already owned by the process. In D1-2GL, we include
all neighbors of ghost vertices (the two-hop neighborhood of local vertices) in each process’s
subgraph, giving us “two ghost layers.” To the best of our knowledge, this approach has
not been explored before with respect to graph coloring.

This method can reduce the total amount of communication relative to D1 for certain
graphs by reducing the total number of recoloring rounds needed. In particular, for mesh
or otherwise regular graphs, the second ghost layer is primarily made up of interior vertices
on other processes. Interior vertices are never recolored, so the colors of the vertices in
the second ghost layer are fixed. Each process can then directly resolve more conflicts in a
consistent way, thus requiring fewer rounds of recoloring. Fewer recoloring rounds results in
fewer collective communications.

However, in D1-2GL, each communication can be more expensive, because a larger
boundary from each process is communicated. Also, in irregular graphs, the second ghost
layer often does not have mostly interior vertices. The relative proportion of interior vertices
in the second layer also gets smaller as the number of processes increases. For the extra
ghost layer to pay off, it must reduce the number of rounds of communications enough to
make up for the increased cost of each communication. We discuss this more in our results.

To construct the second ghost layer on each process, processes exchange the adjacency
lists of their boundary vertices; this step is needed only once. After the ghosts’ connectivity
information is added, we use the same coloring approach as in D1. However, we optimize
our conflict detection by looking through only the ghost vertices’ adjacencies (Eg), as they
neighbor all local boundary vertices. By keeping the new ghost adjacency information
separate from the local graph, we can detect all conflicts by examining only the edges
between ghosts and their neighbors.

3.3. Distance-2 Coloring (D2). Our distance-2 coloring algorithm, D2, builds upon
both D1 and D1-2GL. As with distance-1 coloring, we use algorithms from Deveci et al. in
KokkosKernels for local distance-2 coloring. Specifically, we use NB BIT, which is a “net-
based” distance-2 coloring algorithm that uses the approach described by Taş et al. [29].
Instead of checking for distance-2 conflicts only between a single vertex and its two-hop



168 Distributed Graph Coloring

neighborhood, the net-based approach detects distance-2 conflicts among the immediate
neighbors of a vertex. Our D2 approach also utilizes a second ghost layer to give each
process the full two-hop neighborhood of its boundary vertices. This enables each process
to directly check for distance-2 conflicts with local adjacency information. To find a distance-
2 conflict for a given vertex, its entire two-hop neighborhood must be checked for potential
conflicting colors.

Algorithm 5 Distance-2 conflict detection

procedure Detect-D2-Conflicts(
Local Graph Gl = {Vl + Vg, El + Eg}, colors, GID)
conflicts ← 0
for all v ∈ Vl do in parallel

for all 〈v, u〉 ∈ (El + Eg) do
conflicts ← conflicts + Check-Conflicts(v, u, . . .)
if colors[v] = 0 then

break
for all 〈u, x〉 ∈ (El + Eg) do

. u is one hop and x is two hops from v
conflicts ← conflicts + Check-Conflicts(v, x, . . .)
if colors[v] = 0 then

break
if colors[v] = 0 then

break
return conflicts

Algorithm 5 shows the straightforward way in which we detect conflicts in D2 for each
process. We again use vertex-based parallelism while detecting conflicts; each thread exam-
ines the entire two-hop neighborhood of a vertex v. As with distance-1 conflict detection,
we identify all local conflicts and use a random number generator to ensure that vertices
to be recolored are chosen consistently across processes. The iterative recoloring method of
D1 then also works for D2 – we recolor all conflicts, replace the old ghost colors, and then
communicate local changes.

3.4. Partitioning. We assume that target applications partition and distribute their
input graphs in some way before calling these coloring algorithms. In our experiments, we
used XtraPuLP v0.3 [27] to partition our graphs. Determining optimal partitions for coloring
is not our goal in this work. Rather, we have chosen a partitioning strategy representative
of that used in many applications. We partition graphs by balancing the number of edges
per-process and minimizing a global edge-cut metric. This approach effectively balances
per-process workload and helps minimize global communication requirements.

4. Experimental Setup. We performed scaling experiments on the AiMOS super-
computer housed at Rensselaer Polytechnic Institute. The system has 268 nodes, each
equipped with 2 IBM Power 9 processors clocked at 3.15 GHz, 4x NVIDIA Tesla V100
GPUs with 16 GB of memory connected via NVLink, 512 GB of RAM, and 1.6 TB Samsung
NVMe Flash memory. Inter-node communications uses a Mellanox Infiniband interconnect.
We compile with xlC 16.1.1 and use Spectrum MPI with GPU-Direct communication dis-
abled.

The input graphs we used are listed in Table 3.1. We primarily used graphs from the
SuiteSparse Matrix Collection [10]. The maximum degree, δmax, can be considered an
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upper bound for the number of colors used, as any incomplete, connected, and undirected
graph can be colored using at most δmax colors [8]. We selected many of the same graphs
used by Deveci et al. to allow for direct performance comparisons. We include many graphs
from Partial Differential Equation (PDE) problems because they are representative of graphs
used with Automatic Differentiation [17], which is a target application for graph coloring
algorithms. We also include social network graphs and a web crawl to demonstrate scaling
of our methods on irregular real-world datasets. We preprocessed all graphs to remove
multi-edges and self-loops, and we used subroutines from HPCGraph [28] for efficient I/O.

We compare our implementation against the distributed distance-1 and distance-2 col-
oring in the Zoltan [12] package of Trilinos. Zoltan’s implementations are based directly on
Bozdağ et al. [6]. Zoltan’s distributed algorithm for distance-2 coloring requires only a single
ghost layer, and to reduce conflicts, the boundary vertices are colored in small batches. For
our results, we ran Zoltan and our approaches with four MPI ranks per node on AiMOS,
and used the same partitioning method across all of our comparisons. Our methods D1,
D1-2GL, and D2 were run with four GPUs and four MPI ranks (one per GPU) per node.
Zoltan uses only MPI parallelism; it does not use GPU or multicore parallelism. For con-
sistency, we set Zoltan to four MPI ranks per node, and use the same number of nodes for
experiments with Zoltan and our methods. We used Zoltan’s default coloring parameters;
we did not experiment with options for vertex visit ordering, boundary coloring batch size,
etc.

We omit direct comparison to single-node GPU coloring codes such as CuSPARSE [22],
as we use subroutines for on-node coloring from Deveci et al. [11]. Deveci et al. have
already performed a comprehensive comparison between their coloring methods and those
in CuSPARSE, reporting an average speedup of 50% across a similar set of test instances.
As such, we are confident that our on-node GPU coloring is representative of the current
state-of-the-art.

5. Results. For our experiments, we compare overall performance for D1 and D2 on
up to 128 ranks versus Zoltan. Our performance metrics include execution time, parallel
scaling, and number of colors used. We do not include the partitioning time for XtraPuLP;
we assume target applications will partition and distribute their graphs. Each of the results
reported represents an average of five runs.

5.1. Distance-1 Performance. We summarize the performance of our algorithms
relative to Zoltan using performance profiles. Performance profiles plot the proportion of
problems an algorithm can solve for a given relative cost. The relative cost is obtained by
dividing each approach’s execution time (or colors used) by the better approach’s execution
time (or colors used) for a given problem. In these plots, the line that is higher represents
the better performing algorithm. The further to the right that an algorithm’s profile is, the
worse it is relative to the other algorithm.

We ran D1 and Zoltan with 128 MPI ranks to color the 15 SuiteSparse graphs in
Table 3.1. Some skewed graphs (e.g., twitter7) did not run on 128 ranks on Zoltan or D1; in
those cases we use the largest run that completed for both approaches. D1 used MPI plus
128 Tesla V100 GPUs, while Zoltan used MPI on 128 Power9 CPU cores across 32 nodes
(four MPI ranks per node). Figure 5.1(a) shows that D1 outperforms Zoltan in terms of
execution time in these experiments. The D1 method is the fastest in roughly 95% of the
cases; Zoltan outperforms D1 in only a single instance. D1 has at most a 11.6x speedup
over Zoltan (with the europe osm graph) and at worst an 8% slowdown relative to Zoltan
(with Audikw 1).

Figure 5.1(b) shows that Zoltan outperforms D1 in terms of color usage. Zoltan uses
fewer colors in over 60% of our experiments. However, in most cases, D1 uses no more than
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(a) Runtime performance profile (b) Color performance profile

Fig. 5.1: Performance profiles comparing D1 on 128 Tesla V100 GPUs with Zoltan’s distance-
1 coloring on 128 Power9 cores in terms of (a) execution time and (b) number of colors
computed for the graphs listed in Table 3.1.

5% more colors than Zoltan. With the twitter7 graph, Zoltan uses 45% fewer colors than
D1, but with Mycielskian20, D1 uses 41% fewer colors than Zoltan. On average, D1 uses
6.8% more colors than Zoltan. These increases in the number of colors exist because of the
higher concurrency used by D1 relative to Zoltan.

5.2. Distance-1 Strong Scaling. Figure 5.2 shows strong scaling times for Queen -
4147 and com-Friendster. These graphs are selected for presentation because they are the
largest graphs for their respective problem domains. Data points that are absent were the
result of out-of-memory issues or execution times (including partitioning) that were longer
than our single job allocation limits. D1 scales better on the com-Friendster graph than on
Queen 4147, as the GPUs can be more fully utilized with the much larger com-Friendster
graph. For Queen 4147, D1 is at least 2.7x faster than Zoltan for each run, and D1 uses
12% fewer colors than Zoltan in the 128 rank run. For com-Friendster, D1 is roughly 8x
faster than Zoltan in the 128 rank run, but D1 uses 26% more colors than Zoltan in that
case.
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Fig. 5.2: Zoltan and D1 strong scaling on select (a) PDE and (b) Social Network graphs.
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For graph processing in general, it is often difficult to demonstrate good strong scaling
relative to single node runs. From the Graph500.org benchmark (June 2020 BFS results) [2],
the relative per-node performance difference in the metric of “edges processed per second”
between the fastest multi-node results and fastest single node results are well over 100x.
For coloring on GPUs, graphs that can fit into a single GPU do not provide sufficient work
parallelism for large numbers of GPUs, and multi-GPU execution incurs communication
overheads and additional required rounds for speculative coloring. However, on average
over all the graphs for which we have results, D1 still shows a 5.4x speedup over the single
GPU run on 128 GPUs. On small or highly skewed graphs that fit on a single GPU, we
do not see much speedup, due to the communication overheads and work imbalances that
result from distribution even with relatively good partitioning.

On average over all our graphs, D1 sees a 47.2% increase in the number of colors from
the single GPU run, while Zoltan sees an 53.6% increase in color use over the single GPU
run. Such large color usage increases are mostly due to the Mycielskian19 and Mycielskian20
graphs. These graphs were generated to have known minimum number of colors (chromatic
numbers) of 19 and 20 respectively, and our single GPU runs use 19 and 21 colors to color
those graphs. Both our approach and the Zoltan implementation have trouble coloring these
graphs in distributed memory, but our D1 implementation colors these graphs in fewer colors
than Zoltan. Without these two outliers, the average color increase from the single GPU
run is only 3.15% for D1, and Zoltan decreases color usage by 0.1% on average. Zoltan’s
smaller observed increase is due to its inherently lower concurrency giving a better quality
coloring.
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Fig. 5.3: D1 communication time (Comm) and computation time (Comp) from 1 to 128
GPUs.

Figure 5.3 shows the total communication and computation time associated with each
run. For the Queen 4147 graph, computation time is the dominant factor in the larger rank
runs. Figure 5.3(a) shows that we initially see computational scaling that levels off for large
numbers of ranks. The computation time includes any computational imbalance and the
time needed to launch GPU kernels. At high GPU counts, imbalance or kernel launches
are likely the dominant component of the computation time for this graph, causing scaling
to drop off above 64 GPUs. The com-Friendster graph shows computational scaling all the
way to 128 GPUs, but, in this case, communication is the dominant factor of the execution
time; computation scaling is not visible in the plot.
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5.3. Distance-1 Weak Scaling. The greatest benefit of our approach is its ability to
efficiently process massive-scale graphs. We demonstrate this benefit with a weak-scaling
study conducted with uniform 3D hexahedral meshes. The meshes were partitioned with
block partitioning along a single axis, resulting in the mesh being distributed in “slabs.”
Larger meshes were generated by doubling the number of elements in a single dimension to
keep the per-process communication and computational workload constant. We run with
up to 100 million vertices per GPU, yielding a graph of 12.8 billion vertices and 76.7 billion
edges in our largest tests – this graph was colored in less than half a second.
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Fig. 5.4: Distance-1 weak scaling of D1 on 3D mesh graphs. Tests use 12.5, 25, 50, and 100
million vertices per GPU.

Figure 5.4 shows that the weak scaling behavior for D1 is very consistent. After a jump
in execution time from one to two GPUs due to conflict resolution, the overall time increase
from 2 to 128 GPUs is roughly 10% for each workload.

5.4. D1-2GL Performance. In general, D1-2GL does reduce the number of collec-
tive communications used in the distributed distance-1 coloring. Figure 5.5 compares the
number of rounds for D1 and D1-2GL. Unfortunately, due to the increased cost of each
communication round, D1-2GL does not generally achieve a speedup over D1. Additionally,
second ghost layer vertices may be recolored if they are boundary vertices on another pro-
cessor; this occurs often in dense inputs and incurs further communication costs. However,
in distributed system with much higher latency, D1-2GL could be beneficial.

2 4 8 16 32 64 128
0

2

4

6

8

MPI Ranks

C
ol
le
ct
iv
e
C
om

m
u
n
ic
at
io
n
s
(a
v
g)

D1
D1-2GL

Fig. 5.5: Number of communication rounds for D1 and D1-2GL on Queen 4147 from 2 to
128 ranks.
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5.5. Distance-2 Performance. We also compare our D2 method to Zoltan’s distance-
2 coloring using eight graphs from Table 3.1: Bump 2911, Queen 4147, hollywood-2009,
europe osm, rgg n 2 24 s0, ldoor, Audikw 1, and soc-LiveJournal1. We use the same exper-
imental setup as with the distance-1 performance comparison. Figure 5.6(a) shows that D2
compares well against Zoltan in terms of execution time, with D2 outperforming Zoltan on
a majority of graphs. In the best case, we see a 4.5x speedup over Zoltan on the europe osm
graph.

(a) Runtime performance profile (b) Color performance profile

Fig. 5.6: Performance profiles comparing D2 on 128 Tesla V100 GPUs with Zoltan’s distance-
2 coloring on 128 Power9 cores in terms of (a) execution time and (b) number of colors
computed for a subset of graphs listed in Table 3.1.

Figure 5.6(b) shows that D2 has similar color usage as Zoltan. D2 and Zoltan each
produce the lower number of colors in half of the experiments. In all but one of the cases in
which Zoltan uses fewer colors, D2 uses no more than 10% more colors. Interestingly, the
number of colors used by D2 on the soc-LiveJournal1 graph is unchanged with one and 128
GPUs.

5.6. Distance-2 Strong Scaling. Figures 5.7(a) and 5.7(b) show the strong scaling
behavior of D2 and Zoltan on Bump 2911 and Queen 4147. Bump 2911 shows similar
scaling for both Zoltan and D2. For 128 ranks on Bump 2911, D2 uses 1.2% more colors
than Zoltan, but runs 1.7x faster than Zoltan. With Queen 4147, D2 shows a brief scaling
plateau from four to eight GPUs. This performance is an artifact of graph partitioning;
the boundary size for eight ranks is the second largest out of all GPU counts except for
128 GPUs, resulting in a larger-than-expected communication cost. Zoltan is less sensitive
to boundary sizes in the distance-2 case because it uses a more optimized communication
pattern than our approach. After the eight-rank run, D2 scales slightly better than Zoltan
up to 128 ranks. For the 128-rank run, D2 runs 2.1x faster than Zoltan, and uses 10% fewer
colors.

On average over the eight graphs, D2 exhibits 9.32x speedup on 128 GPUs over a single
GPU, and uses 2.7% more colors than single GPU runs. Speedup is greater with D2 than
D1 because distance-2 coloring is more computationally intensive, and thus has a larger
work-to-overhead ratio.

Figures 5.8(a) and 5.8(b) show the communication and computation breakdown of D2
on Bump 2911 and Queen 4147. Bump 2911 shows computation and communication scaling
for up to 128 ranks, while color usage increases by only 2.7%. In general, the relative increase
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Fig. 5.7: D2 and Zoltan strong scaling for distance-2 coloring.
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Fig. 5.8: D2 communication time (comm) and computation time (comp) from 1 to 128
GPUs.

in color usage from a single rank for distance-2 coloring is less than for distance-1 coloring.
The number of colors used for distance-2 coloring is greater than for distance-1; therefore, a
similar absolute increase in color count results in a lower proportional increase. Figure 5.8(b)
shows that communication is the source of the runtime plateau shown in Figure 5.7(b).

5.7. Distance-2 Weak Scaling. Figure 5.9 demonstrates the weak scaling behavior
for D2. The same hexahedral mesh graphs were used as in the D1 weak scaling experiments.
For small per-node workloads, the weak scaling is good. For larger per-node workloads,
execution times increase slightly. For these larger tests, the communication time, conflict
detection time and initial coloring time all stay relatively flat, as does the number of rounds
of communication. However, we observe an increase in imbalance for recoloring times across
GPUs in these instances. Identifying and correcting the source of this imbalance is future
work.
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Fig. 5.9: Distance-2 weak scaling of D2 on 3D mesh graphs.

6. Future work. We plan to extend our distance-2 coloring to partial distance-2 color-
ing to support automatic differentiation applications. In partial distance-2 coloring, coloring
criteria are applied only to vertices that are two hops apart. Since the colors of adjacent ver-
tices are not considered, a proper partial distance-2 coloring may not be a proper distance-2
or even a proper distance-1 coloring. Our goal is to deliver a complete suite of MPI+X
algorithms for distance-1, distance-2, and partial distance-2 coloring in the Zoltan2 package
of Trilinos. This work’s target application is the optimization of the computation of sparse
Jacobian [25] and Hessian matrices [17], both of which are used in automatic differentiation
and other computational problems [5].
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IMPROVEMENTS TO THE PERFORMANCE PORTABILITY OF
BOUNDARY CONDITIONS IN ALBANY LAND ICE

MAX CARLSON† , JERRY WATKINS‡ , AND IRINA TEZAUR§

Abstract. In order to accommodate the performance needs for the new generation of supercomputers,
Sandia’s Albany Land-Ice (ALI) code base is being refactored to use the Kokkos performance portability
framework. One of the goals of this summer internship was to identify any performance bottlenecks related
to the Kokkos refactor specific to the finite element assembly in ALI that would hinder GPU performance.
Using the Land Ice Enthalpy problem as a test case, we identified performance bottlenecks related to the
evaluation of the boundary conditions in Albany. By reworking how boundary conditions are represented in
Albany, all memory accesses on the GPU are now properly coalesced, resulting in performant GPU kernels.
Additionally, the new boundary condition layouts significantly reduce the amount of memory needed to
store boundary data. The Kokkos refactor as a whole led to a finite element assembly speedup of 1.6× on
64 KNL CPU processors, and 4.5× on 64 V100 GPUs on a Greenland ice sheet problem discretized using a
variable resolution 1km-10km mesh. With the reworking of boundary conditions, we achieved an additional
1.5× speedup on V100 GPUs. The overall performance improvements that come from this work are a large
step towards the goal of full end-to-end ALI GPU runs on the Summit supercomputer.

1. Introduction. In an effort to modernize existing climate science software, there
has been a strong push in recent years towards developing and upgrading codes to achieve
high performance on the wide variety of specialized accelerator architectures available. As
part of these modernization efforts, the Albany Land Ice (ALI) code is in the process of
being updated to achieve high performance on both GPU and CPU architectures using
the Kokkos [5] performance portability framework. In this paper, we describe some recent
efforts towards a full refactor of ALI using Kokkos.

Albany [9] is an object-oriented, parallel, C++ code for discretizing and solving partial
differential equations (PDEs) using the finite element method on unstructured grids. It
is built to take full advantage of the Trilinos [7] collection of libraries and is based on a
component-based design ideology that allows for quick and easy integration of new func-
tionality. The typical problem-solving pipeline in Albany consists of constructing a global
system corresponding to a discretized PDE, and passing it to Trilinos for a linear/nonlinear
solve, or time-advancement (in the case of an unsteady problem).

As part of the initiative of modernizing climate science software, the ALI module in
Albany was created to enable the simulation of ice sheet evolution using modern C++. ALI
is based on the first-order approximation of the nonlinear Stokes flow model for glaciers and
ice sheets (also known as the Blatter-Pattyn model), which models an ice sheet as a power-
law viscous, incompressible fluid [10]. Toward this effect, the ALI model consists of a set of
steady equations for the ice sheet velocities, which are coupled to dynamic equations for the
ice thickness and ice temperature (or, equivalently, enthalpy). The ALI model is hooked up
to the U.S. Department of Energy’s (DOE’s) Energy Exascale Earth System Model (E3SM)
through its interface to the Model for Prediction Across Scales (MPAS) framework. The
resulting code, known as MPAS-Albany Land Ice (MALI), enables dynamic simulations
of ice sheet evolution, either in a stand-alone mode, or coupled to the E3SM. Attention
is focussed herein on refactoring the finite element assembly (FEA) part of the so-called
velocity and enthalpy solvers comprising MALI, both implemented on the ALI side of the
MALI code. The FEA in Albany in general takes approximately 50% of the total CPU time
when running an ALI problem. The remaining 50% of the CPU time is spent in the linear
solve part of the computation, the discussion of which is beyond the scope of this paper.

†University of Utah School of Computing, mcarlson@cs.utah.edu
‡Sandia National Laboratories, jwatkin@sandia.gov
§Sandia National Laboratories, ikalash@sandia.gov
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One of the biggest challenges for modern scientific software development is achieving
high performance on the various multicore and manycore architectures available. Each ar-
chitecture can have its own unique programming model, API, and specific requirements to
achieve high performance. Previous work has been done to study and refactor the Albany
code using the Kokkos performance portability framework and the work presented in this
paper is the next step in this process [6, 11]. This work focused on achieving a performance
portable implementation of the FEA for the ALI velocity problem, not including boundary
condition effects. Herein, we describe our recent work in porting to Kokkos the FEA assem-
bly for the ALI enthalpy problem [3, 8], which, when coupled to the ALI velocity problem,
enables a more complete characterization of an ice sheet’s state, including its velocity to-
gether with its temperature. We discuss also our resolution of several issues that originally
prevented the high performance evaluation of the boundary conditions for the ALI enthalpy
problem.

The remainder of this paper is structured as follows. First, in Section 2, we give some
background about performance portability and describe some of the performance considera-
tions that are unique to GPU architectures. Next, in Section 3, the specific implementation
details for the enthalpy and boundary condition performance refactor is presented. Finally,
in Section 4, we present the performance we achieved using the techniques described in
Section 3 on several different architectures.

2. Performance Portability. While bridging the gap between all of the program-
ming models and accelerator architectures is not a trivial or solved problem, a number of
frameworks have been developed to tackle this issue. Some of the frameworks that have
been designed for this task include Kokkos [5], Raja [4], OneAPI [2], HIP [1], and others.
Many of these solutions overlap in terms of functionality and the choice of framework largely
boils down to taste and project requirements. Since the Trilinos project has chosen to use
Kokkos to achieve performance portability and since Albany is so tightly coupled to Trilinos,
it made sense to use the Kokkos framework for this work.

The main target for the work outlined in this paper is to achieve high performance on
GPUs to enable Albany Land Ice runs that take full advantage of the Summit supercom-
puter’s hardware configuration. Achieving high performance on Intel’s Knight’s Landing
(KNL) generation of CPUs is a secondary target. Attaining high performance on GPUs is
especially tricky due to performance needs that are unique to GPU architecture (described
in more detail below). Since much of this work requires a familiarity with these unique
needs, we will now give a little background on concepts that will be referenced throughout
the remainder of the paper.

2.1. Unified Virtual Memory. Unlike traditional CPU architecture, GPUs can only
access data that are stored on the device itself and have a unique memory hierarchy. The
cost of moving data between the host and the device is significant and care must be taken to
reduce these data movements as much as possible. Typically, host/device data transfers are
controlled explicitly by the programmer. While this allows for a greater amount of control,
the added code complexity and programmer effort can sometimes not be worth the cost.

Alternatively, a project can enable CUDA’s unified virtual memory (UVM) mode to
avoid handling these memory transfers explicitly. UVM is an abstraction that treats the
host and device as a single memory space and does device transfers as needed behind the
scenes whenever memory is accessed. While this mode makes handling data movement much
simpler for the programmer, it may cause performance degradations, as device transfers may
occur in unexpected places.

Since Trilinos is designed to use UVM, Albany has inherited this requirement. We point
this out because UVM has non-intuitive effects on performance measurements. For instance,
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the first time an evaluator accesses data that was initialized on host, there will be a hidden
device transfer that gets captured in the evaluator timing. There are known workarounds
to avoid using UVM in conjunction with Trilinos, but the developers of Trilinos are in the
process of removing UVM as a requirement. Therefore, we decided it was not worth the
effort and increased code complexity to utilize such a workaround for this project.

2.2. Maximizing Available Parallelism. Achieving high GPU performance requires
exposing enough parallelism to fully take advantage of available computing hardware on the
GPU. If the amount of work to be done across the threads is not large enough, many
of the device’s streaming multiprocessors (SM) will sit idly while waiting for the result.
It is sometimes unavoidable that a stage of computation may not have enough work to
fully saturate the device. In this case, it is a good idea to schedule multiple small kernels
concurrently so that the device can be fully utilized. While scheduling concurrent kernels
can be done manually using CUDA streams, newer versions of CUDA have introduced the
CUDA graph structure. A CUDA graph allows a programmer to provide a directed acyclic
graph of kernels to be launched and their dependencies can be used by CUDA to attempt
to maximize concurrent scheduling of computation. Additionally, work is being done by the
Kokkos team to incorporate CUDA graphs into the Kokkos library.

2.3. Coalesced Memory Access. When the GPU is saturated with work, coalesced
memory access becomes the most important aspect of achieving high performance. A GPU
block loads in data as a contiguous block that can then be processed by its collection of
threads. If each thread requires a piece of data from different locations in memory, then
the SM will have to load an entire block’s worth of data for each thread. If, alternatively,
all of the threads require data that are contiguous in memory, the SM will only have to
fetch one single block. This type of contiguous memory access is referred to as a coalesced
memory access. GPUs are sometimes capable of enormous speedups over CPUs but if a
programmer does not ensure coalesced access then it is possible to achieve slowdowns over
CPU of equally large magnitude.

3. Implementation Details. Albany’s finite element assembly relies on the Trilinos
Phalanx package that decomposes a complex problem into smaller pieces known as evalu-
ators with managed dependencies. These evaluators then form a directed acyclic graph of
operations to be carried out. In general, an evaluator is used to calculate both a residual
and a corresponding Jacobian. Jacobians are computed using the automatic differentiation
package within Trilinos known as Sacado.

In this section, we will split the details of the changes we made to the enthalpy problem
into those that only affected the volume evaluators and those that only affected the boundary
condition evaluation. Volume evaluators are those that evaluate the residual and Jacobian
across the entire computational domain (volume). We separate these two works since the
volume refactor can be seen as a simple extension of the work done in [6] to the enthalpy
problem. The boundary condition refactor is more involved and required fundamentally
rethinking how boundary conditions are represented by Albany in order to ensure coalesced
memory access for consistently achieving high performance on GPU architectures.

The typical pipeline for finite element assembly in Albany is shown in Figure 3.1. Prob-
lem data are loaded during the import stage and distributed via MPI communication to
data structures that allow for efficient shared memory access during the interpolation and
evaluation phase. Once these phases complete, the resulting computed fields are scattered
using MPI communication and exported to Trilinos to be used in the solver. For the en-
thalpy problem, the phases that still needed to be ported using Kokkos reside entirely in
the interpolation and evaluation phase of this pipeline.
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Solution Residual
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Fig. 3.1: A flow chart showing the main work flow for a single nonlinear iteration of the
Albany Land Ice solver. Finite element assembly begins and ends with distributed memory
assembly (DMAssembly) (in yellow) which constructs data structures which run more effi-
ciently during the linear solver and finite element assembly phases. This is also where MPI
communication occurs. The remaining shared memory assembly (SMAssembly) processes
(in blue) perform global and local assembly and are parallelized over elements using Kokkos
parallel for.

3.1. Volume Refactor. Assembly of the enthalpy problem’s system is done by run-
ning a series of evaluators, each with dependent and evaluated fields. Some of these evalu-
ators fall under the category of ‘Interpolate’ such as interpolating a field from cell centers
to quadrature points or nodal values. The ‘Evaluate’ phase consists of using interpolated
values to compute fields relating to the science of the underlying problem. For the enthalpy
problem this includes evaluating the hydrostatic pressure or temperature throughout the
domain. Since the evaluators in the ‘Interpolate’ phase are common among other problems
in Albany, those that are specific to volume evaluation have already been ported. This
section then focuses on the physics evaluation in the ‘Evaluate’ phase.

Each evaluator in the ‘Evaluate’ phase has a common structure. Each evaluator loops
at the highest level over the total number of cells in the workset. Then depending on
the type of evaluator, there may be a loop over quadrature points, cell nodes, or vector
dimensions. At the cell level, each computation is entirely data independent and makes up
the majority of the computation. Therefore, our strategy is to parallelize this loop using
a Kokkos ‘parallel for’. Since the fields being evaluated are represented as Kokkos views,
the underlying data layout is chosen depending on the hardware. For GPUs, the default is
known as “Kokkos LayoutLeft”. This layout is such that the first index of a view, in this
case cells, is the contiguous one and ensures that the memory access is coalesced.

For simpler evaluators, simply parallelizing over the total number of cells is enough to
achieve high performance. However, to compute the enthalpy residual, the evaluator has
multiple stages of computation that each has its own cell loop. First, the evaluator loops
over all cells to compute an optional dissipation term. Then, another loop over the cells
to compute the influence of the basal term. And then finally, a third loop over the cells
to compute the total residual. This was inefficient since each of these loops update every
entry of the enthalpy residual field. By combining these into a single loop over cells, and
accumulating the enthalpy residual into a local intermediate value, we instead only write
to the enthalpy residual field once at the very end of computation. Since accessing global
memory on GPUs is slow, reducing the number of times the evaluator needs to move data
to global memory is ideal. While this data movement has less of an impact on CPUs, it
does reduce the number of writes, potentially leading to improved performance.
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Fig. 3.2: Diagram illustrating the old and new layouts for boundary data fields. Grey blocks
correspond to cells in the boundary field that will never be accesses at any point. Green
cells correspond to entries corresponding to the boundary being represented. Blue cells are
cells in the volume field that will be accessed at some point but are not necessarily part of a
boundary computation. Notice that the new boundary layout matches the side set mapping
structure so both can be accessed in coaleseced manner on the GPU.

3.2. Boundary Condition Refactor. Before this refactor, the fields corresponding
to boundary conditions were represented by arrays over all of the cells in the domain in-
cluding those that are not related to the boundary at all. Then, instead of looping over the
total cells, a boundary condition evaluator would loop over an array of side set structures
that would point to the cells relevant to the boundary condition calculation. With this rep-
resentation, only a very small percentage of the underlying field contained data that would
ever be accessed or updated.

The obvious strategy for parallelizing these evaluators was to parallelize over the array
of side set structures. This way, accessing the array of side set structures would be coalesced
and each element of the side set array would be data independent. However, each side set
structure only contained the information of where to find the cell/side pair of interest in the
underlying field data structure. Each entry in the side set array was contiguous, but the
locations that they pointed to were not. This meant that the bulk of computation required
accessing global memory in an entirely non-coalesced fashion, which resulted in very large
performance penalties.

In order to get around this issue, the underlying data layout for boundary fields had
to be modified and a small visual example of the new layout can be seen in Figure 3.2.
Instead of having boundary fields scattered throughout an array with many unused entries,
the updated layout was collapsed to match that of the side set structure array. In this case,
the ith entry of the side set array corresponded to the ith entry of the field array. With
this structure, both access to the field of interest and the side set array could be done in
a coalesced manner on the GPU. The side set information was still required to eventually
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gather the boundary data into volume fields, this non-coalesced access would only happen
once instead of every single time boundary data were accessed.

In addition to updating the layouts, the side set structure itself was not in a form that
was accessible by GPU. Originally, side sets were represented by a C++ vector of structures
containing side set index information. In order to make this accessible by the GPU, we had
to replace this structure with a Kokkos view for each item in the original side set structure.
Also, since Albany separates work into worksets and boundary data is defined only for each
workset, the structure-of-views were separated into a global and local structure. The global
structure contained the entirety of the side set information across all worksets and the local
structure pointed to specific subviews limited to the workset in question.

4. Performance Results. In order to test the performance of the refactored code
against the original, we set up a collection of experiments with three different types of
builds for each architecture. These three builds are: the original code, the volume refactor
code, and the combined volume and boundary condition code (BCs). By doing this, we were
able to determine exactly how much each refactor contributed to the overall performance
change.

Since we are using Kokkos to handle the performance portability aspects, we can also
provide architecture information during compilation to target specific architectures. The
three types of builds are ‘Serial’, ‘OpenMP’, and ‘GPU’. By providing Kokkos with this in-
formation, the underlying data layouts can then be defined at compile time using a template
parameter.

The performance results in this section were all computed on either the Vortex or
Mutrino computing clusters at Sandia. Vortex is a cluster that has 4 V100 GPUs per node
and a dual-socket POWER9 CPU (40 cores per node). For OpenMP runs, we used Mutrino
which has single-socket Intel Knight’s Landing (68 cores per node) and dual-socket Haswell
generation CPU nodes (32 cores per node).

For these comparisons, we ran the enthalpy problem on a Greenland ice sheet geometry
discretized using a variable resolution 1km-10km mesh. To solve this problem on GPUs, we
used 64 Volta V100 GPUs distributed among 16 nodes on Vortex. For OpenMP runs, we
used a comparable setup of 16 single-socket KNL CPUs (68 cores per socket) distributed
among 16 nodes on Mutrino using 4 OpenMP threads per core mapped to hardware threads.
The first experiment we ran was to see how each build compares with the original non-
refactored implementation and the results can be seen in Tables 4.3, and 4.4.

The temperature, dissipation, hydrostatic pressure, and liquid water fraction evaluators
all have the same basic internal structure. They are simply a loop over the number of cells
and quadrature points to update a single independent value. Even though each of these
evaluators operate on the same volume of data, timing each evaluator individually shows
that each takes a drastically different amount of time. This is a timing artifact that occurs
while using CUDA UVM. When using CUDA UVM, data transfers are only done as soon as
host-side data are first requested. Hydrostatic pressure, and liquid water fraction are some of
the first evaluators to be called and their timings are artificially inflated by data transfers.
From this experiment, it is clear that we cannot rely on timing individual evaluators to
determine the overall performance change. Therefore, we instead use Nvidia’s profiling tool,
nvprof, to evaluate a number of metrics for each of these individual evaluators.

The results of this profiling for the volume evaluator refactor can be seen in Table 4.1.
The profiling results for the boundary condition refactor can then be seen in Table 4.2.
In the volume evaluators, we see that on 8 total V100 GPUs, we are fully saturating the
device and therefore getting device memory throughput close to the maximum attainable
for V100s. Since the boundary condition evaluators have less data to operate on, even for
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Table 4.1: Nvidia profiler (nvprof) results for volume refactor evaluators, run using two
nodes with four V100 GPUs each on the 1km-10km variable resolution Greenland ice sheet
mesh. Using this configuration, the volume evaluators have more than enough work to
saturate the GPU and achieves high device memory throughput. Occupancy is largely near
100% but can be improved by limiting register usage.

Evaluator Achieved

Occu-

pancy

Device

Memory

Read

Through-

put

Device

Memory

Write

Through-

put

Global

Load

Efficiency

Global

Store

Efficiency

Temperature 53.3% 371.8 GB/s 355.2 GB/s 100% 100%

Dissipation 96.2% 481.2 GB/s 235.3 GB/s 100% 100%

HydrostaticPressure 96% 509.7 GB/s 256.5 GB/s 100% 100%

LiquidWaterFraction 95.4% 512.8 GB/s 255.3 GB/s 100% 100%

EnthalpyResid 43% 571.5 GB/s 94.5 GB/s 100% 100%

Table 4.2: Nvidia profiler (nvprof) results for boundary condition refactor evaluators, run
using two nodes with four V100 GPUs each on the 1km-10km variable resolution Greenland
ice sheet mesh. The volume of data for these evaluators using this node configuration is
enough to achieve mostly good throughput but they are becoming latency bound. These
evaluators are a prime candidate for concurrent kernel launches to ensure full device utiliza-
tion.

Evaluator Achieved

Occu-

pancy

Device

Memory

Read

Through-

put

Device

Memory

Write

Through-

put

Global

Load

Efficiency

Global

Store

Efficiency

EnthalpyBasalResid 46.6% 364.4 GB/s 91.5 GB/s 88.3% 25%

BasalMeltRate 46.8% 463.9 GB/s 145 GB/s 100% 100%

InterpolationSide 46.8% 417.3 GB/s 167.2 GB/s 100% 100%

VecInterpolationSide 44.2% 468.7 GB/s 151.4 GB/s 100% 100%

Table 4.3: Total fill time comparison of MPI+CUDA V100 build for the original code
(CUDA-original), the volume refactor (CUDA-volume), the combined volume and boundary
condition refactor (CUDA-BCs), and MPI-only serial POWER9 build for the original code
(serial-original).

CUDA-original CUDA-volume Speedup
Total Fill Time 183.12 sec 3.8 sec 48.2

serial-original CUDA-volume Speedup
Total Fill Time 16.75 sec 3.8 sec 4.4

serial-original CUDA-BCs Speedup
Total Fill Time 16.75 sec 2.79 sec 6
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Table 4.4: Total fill time comparison of MPI+OpenMP KNL build for the original code
(KNL-original), the volume refactor (KNL-volume), and MPI-only serial KNL build for the
original code (serial-original).

KNL-original KNL-volume Speedup
Total Fill Time 28.12 sec 20.14 sec 1.4

serial-original KNL-volume Speedup
Total Fill Time 32.4 sec 20.14 sec 1.6
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Fig. 4.1: Strong scaling for the Greenland ice sheet 1km-10km mesh using the fully refactored
code.

this node configuration, we see that the device throughput is diminished in comparison. The
boundary evaluators become latency bound much more quickly than the volume evaluators
and are prime candidates for concurrent kernel launching using CUDA or Kokkos graphs.

Finally, we observe the overall total finite element assembly time for each build to see
how the performance changes. In Table 4.3, we show the total fill time for the original
CUDA build, the volume refactored CUDA build, and the original serial build. Since the
original CUDA build was only partially ported to run on GPUs, every time a CPU evaluator
followed a GPU evaluator (or vice versa), there was an expensive data transfer. This is
partially why the original CUDA build has an artificially inflated run time. Additionally,
we only launch one MPI task per GPU so the host-side work is divided only among a few
processes. However, when compared to the MPI-only serial build, we see a greater than four
times speedup.

While this project was primarily targeting GPU performance, we also wanted to see
how the volume refactor affected performance on KNL CPUs. For this, we used the KNL
OpenMP build and ran the same comparison. The results of this comparison can be seen
in Table 4.4. The reader can observe that even without explicitly targeting OpenMP, the
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Fig. 4.2: Timing breakdown for all evaluator groups within the enthalpy finite element
assembly using the fully refactored MPI+CUDA build on 64 V100 GPUs.

volume refactor attained a 1.4× speedup over the original OpenMP build and a 1.6× speedup
over the MPI-only serial build.

We then added in the boundary condition refactor and repeated these comparisons to
determine the performance change. In Table 4.3, we show that the boundary condition
refactor increased the speedup over the original MPI-only serial build to 6×. By comparing
the volume CUDA build and the fully refactored build, we see that the boundary condition
changes give us an extra 1.4× speedup. We repeated this comparison for an OpenMP on
a KNL machine, but there was no measurable change. This is to be expected since the
boundary condition changes were purely targeted at GPUs.

We then ran a strong scaling experiment for the fully refactored code for each of the
architectures using the Kokkos backend that achieved the best performance. In Figure 4.1,
we present the total fill times using 2, 4, 8, and 16 nodes. At 16 nodes, the performance of the
CUDA build starts to degrade since the amount of work per GPU is small and not enough
to saturate the devices. This is further evidence that as the amount of work decreases per
rank, we need to properly schedule concurrent launching of evaluators.

From the strong scaling experiment, we see that the CUDA build is only about 2.4
times faster than the Haswell build. In order to understand why the GPU build was not
achieving the kind of speedup we expected, we ran a timing breakdown to determine what
parts of the finite element assembly were taking the most time. In Figure 4.2, we show this
breakdown with the evaluators grouped into categories. The ‘Evaluate’ category contains all
of the physics based evaluators and contains the majority of evaluators that were refactored
in the volume refactor. ‘Interpolate’ contains interpolation evaluators and, aside from the
boundary interpolation evaluators, was already ported to GPU since they are used in other
problems. ‘Save State’ and ‘Load State’ consists of evaluators that prepare the underlying
data fields for I/O operations. ‘Scatter’ and ‘Gather’ correspond to the stages seen in
Figure 3.1 and are detailed in [9]. Finally, ‘Compute Basis Functions’ contains evaluators
the evaluate the finite element basis functions throughout the volume and boundary.

From these results, it is very clear that the performance bottleneck is the ‘Save State’
evaluators. These evaluators are needed in preparation for I/O operations which currently
can not be accelerated using GPUs. We have a potential change in mind to the underlying
mesh discretization that would remove the need for these evaluators but that is outside of
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the scope of this paper. However, the performance penalty we are seeing here is only seen
on the GPU build, so once these evaluators are removed, the overall speedup over Haswell
should become much more pronounced.

Since the ‘Save State’ evaluators dwarf all of the other categories, we removed that
category from the breakdown and the remaining breakdown can be seen in Figure 4.2.
From this, it can be seen that the ‘Evaluate’ category is now roughly identical in total
run time as the ‘Interpolate’ category which was previously ported to Kokkos. Aside from
further optimization to these evaluators, we can now see that the port of the ‘Evaluate’
category has achieved the kind of performance we were aiming for.

5. Conclusion and Future Work. With the work outlined in this paper, the finite
element assembly of the enthalpy problem is now running entirely on the GPU and attaining
high performance relative to other architectures. Additionally, since we have used Kokkos
for the GPU refactor, we are also seeing speedups on serial and KNL OpenMP builds for
the enthalpy problem.

The work we did refactoring the enthalpy problem’s boundary condition evaluation
also acts as a proof of concept that we can attain good GPU performance for boundary
evaluators. This is a big step forward since none of the boundary condition evaluators for
other problem types implemented in Albany have been ported. Now that we can move
boundary condition evaluation to the device without suffering performance penalties, we
are one step closer to full end-to-end runs on the GPU clusters such as Summit.

Since the goal of this project was primarily to get the enthalpy problem running entirely
on GPU, some of the evaluators are not as optimized as they could be. The next step in this
project is to revisit both the volume and boundary evaluators and optimize as needed to
make sure we are getting as much performance as possible. We also intend to use the same
boundary condition implementation to refactor the boundary condition evaluation for the
velocity problem. Finally, the remaining major bottleneck is the linear solve. Once we have
finished porting the linear solve to GPU, we can then run end-to-end land ice simulations
entirely on GPUs. Porting the linear solver also relies on porting of Trilinos code which is
currently a work in progress.

While the dominating time for the full problem is now the linear solve, we can still
achieve better scaling for the finite element assembly by taking advantage of concurrent
scheduling of kernels on the device. As we decrease the problem size per GPU via strong
scaling, it is clear that we are not achieving full utilization of the device. We can improve
this scalability by giving the underlying Phalanx DAG to Kokkos and take advantage of
CUDA/Kokkos graphs to attain a higher level of concurrency.
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GENTEN PERFORMANCE PORTABLE DENSE TTM KERNELS

BENJAMIN COBB∗, ERIC PHIPPS† , HEMANTH KOLLA‡ , AND ÜMIT V. ÇATALYÜREK§

Abstract. This paper details several implementations of optimized, performance portable Tensor Times
Matrix kernels utilizing the Kokkos programming model. The Tensor Times Matrix (TTM) kernel consists
of multiplying a tensor by a matrix along a given mode of the tensor. The TTM kernel is used in several
tensor algorithms, the most prominent of which is the Sequentially Truncated Higher-Order Singular Value
Decomposition (ST-HOSVD). The ST-HOSVD can be used to facilitate data-analysis and compression of
high dimensional data, such as combustion simulation data, which is currently an active Sandian research
topic. Speeding up the ST-HOSVD algorithm heavily relies upon optimizing the TTM kernel, due to the fact
that a significant, often majority, of the time in the ST-HOSVD algorithm is spent calculating the TTM at
each iteration. Our TTM implementations are based on the work of Ballard et al. and are competitive with
state of the art TTM implementations, with the added benefit of leveraging the Kokkos programming model
to enable performance portability. We present comparison results with several of these implementations,
discussing the advantages and disadvantages of each.

1. Introduction. As our ability for collecting and generating data continues to evolve,
the corresponding capacity to store and quickly analyze such data lags behind. Colloquially
known as the “storage bottleneck” problem, this phenomena is often seen in fields such
as bioinformatics that rely on collecting, analyzing and storing vast amounts of data [13].
Furthermore, many modern simulations can also easily generate terabytes of data, as seen
in the turbulent flame combustion simulations done by Kolla et al. [9]. In both instances
the problem is exacerbated when the data is a higher-dimensional tensor as the size of the
dataset grows exponentially with an increase in the number of dimensions. Many techniques
have been developed to help compress such massive data in order to make it more amenable
to storage and analysis. One of these techniques, similar to the Tucker decomposition,
can be used to calculate the higher dimensional analog of the dataset’s Singular Value
Decomposition (SVD). Generally a low rank approximation of this decomposition is used
in practice. This low rank higher order singular value decomposition is commonly referred
to as the Sequentially Truncated Higher Order SVD, ST-HOSVD for short. The algorithm
to calculate the ST-HOSVD primarily relies upon two tensor kernels: the Gram matrix
referred to as the Gram kernel and the tensor times matrix kernel, referred to from here out
as the TTM kernel. In this paper we present several implementations of the dense TTM
kernel based on the work of Ballard et al. [2] that are competitive in terms of single-node
runtimes with the state of the art. In addition, several of these kernels are implemented
using the versatile Kokkos programming model, giving them the performance portability
to run on heterogeneous systems and improving their chances of maintaining performance
on future computer architectures. To our knowledge these implementations are the first
implementation to apply Kokkos to the TTM kernel in this manner.

2. Related Work.

2.1. Kokkos. Kokkos [4] is a C++ programming model developed by Sandia National
Labs that aims to enable performance portable code that is capable of running with compa-
rable performance across a variety of manycore computer architectures. It does so through
utilizing multi-dimensional array data structures with polymorphic layouts known as Views
to manage architecture dependent data memory distributions. These Views have two pri-
mary memory layouts known as LayoutLeft and LayoutRight. LayoutLeft stores the View in
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‡Sandia National Laboratories, hnkolla@sandia.gov
§Georgia Institute of Technology, umit@gatech.edu
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column-major order, whilst LayoutRight stores the View in row-major order. Under normal
circumstances Views keep a reference count that tracks the number of Views accessing the
same memory location, automatically deallocating the memory once the last View referenc-
ing it is destroyed or goes out of scope. However, Views may also be Unmanaged, meaning
that they do not increase the reference count for a View memory location. Unmanaged Views
are essentially pointers to View memory and are thus useful for accessing View memory in-
dependent of preexisting Layout. The way in which these Views are accessed is specified
by various Kokkos execution spaces, which reflects the device that is accessing the memory.
For example, a host execution space may refer to CPU data accesses, whilst a CUDA exe-
cution space may refer to GPU data accesses. Kokkos additionally provides the ability to
copy memory between these various execution spaces. Several of our TTM implementations
utilize this Kokkos programming model to facilitate performance portability.

2.2. KokkosKernels. Kokkos Kernels is built on top of Kokkos to deliver performance
portable math kernels for linear algebra operations and graph computations. We utilize
Kokkos Kernel’s general matrix-matrix multiplication (GEMM) function in several of our
implementations to facilitate the tensor submatrix multiplications that are a key step in the
TTM algorithm and are detailed in subsequent sections.

2.3. GenTen. GenTen [14] is the driving force behind this project as we seek to inte-
grate our optimized TTM implementations into GenTen’s ST-HOSVD function to yield the
first ever full Kokkos implementation of this critical algorithm. GenTen currently contains
a performance portable Matricized Tensor Times Khatri-Rao Product (MTTKRP) kernel
that leverages Kokkos. GenTen uses this highly optimized MTTKRP kernel to facilitate its
implementation of the Candecomp/Parafac Alternating Least Squares (CP-ALS) algorithm,
another tensor decomposition technique that can be viewed as the higher-dimensional analog
of matrix factorization. GenTen’s MTTKRP implementation has been benchmarked exten-
sively on modern Intel CPUs, Knight’s Landing (KNL) accelerators, and NVIDIA GPUs.
On this diverse set of architectures, GenTen’s CP-ALS function performed with compara-
ble efficiency on all systems. Future work includes testing our TTM implementations on a
similar set of architectures in hopes of showing similar performance across architectures.

2.4. TuckerMPI. TuckerMPI [2] is a C++ software package that utilizes MPI to im-
plement several tensor decomposition algorithms, including the aforementioned ST-HOSVD
algorithm. TuckerMPI’s goal is to provide a framework for parallelizing massive tensor com-
putations across multiple CPU-based nodes. On each node, the local computations can be
parallelized via multiple on-node MPI processes, each of which utilizes highly optimized
LAPACK libraries for their individual computations. TuckerMPI provides the user with the
ability to set the dimensions of the processor grid upon which the tensor is block partitioned.
TuckerMPI has been shown to effectively compute the ST-HOSVD of datasets up to 6.7 TB,
resulting in compression ratios up to 4×104. Originally we had extracted TuckerMPI’s TTM
from its ST-HOSVD driver and compared its runtime to GenTen’s runtime. However, due
to high variance in the collected timings we ultimately decided to not make the comparison.
Our TTM implementations were closely based off of the algorithm specified in Ballard et al
[2].

2.5. Matlab Tensor Toolbox. Within the last decade, the Matlab Tensor Toolbox
(TTB) [8] has arguably been the most seminal of all tensor software packages in the field of
tensor decompositions. The TTB allows for fast prototyping and experimentation of tensor
computations. TTB’s TTM function relies on Matlab’s highly tuned LAPACK libraries and
builtin thread parallelism to efficiently execute tensor calculations on a single node. TTB’s
dense TTM kernel contains two implementations, which we refer to as TTB reorder and
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TTB. TTB reorder explicitly reorders the tensor in memory to perform the TTM, whilst
TTB utilizes the same approach based upon the work of Ballard et al. employed by our
implementations. TTB was used to generate all of our unit tests to ensure correctness and
for runtime comparison for different thread counts.

2.6. InTensLi. InTensLi [10] is an “Input-Adaptive and In-Place Approach to Dense
Tensor-Times-Matrix Multiply.” Essentially, InTensLi utilizes a novel TTM algorithm to
perform the computation in place, saving on the memory footprint of the algorithm. In-
TensLi utilizes the BLIS library [18] to efficiently calculate strided matrix multiples in order
to enable their in-place algorithm. Comparing our CPU runtimes to InTensLi’s runtimes on
a single node is another potential avenue for future research.

2.7. GPU Distributed Dense Tucker. In 2018 Choi et al. demonstrated a dis-
tributed GPU implementation of the Tucker algorithm. An important part of this algo-
rithm was a GPU implementation of TTM. They also proposed efficient ways to access and
manipulate the matricized tensor to make it more amenable to GPUs calculations. Analysis
contained in Choi et al [3] showing that the TTM kernel takes a significant portion of the
ST-HOSVD algorithm further motivates our work.

2.8. Eigen. Eigen [6] is a C++ template library that provides a plethora of highly
optimized linear algebra routines including the standard BLAS/LAPACK routines. Eigen
is primarily know for its matrix operations, but also provides an optimized suite of various
tensor operations. Included in these tensor operations is the tensor contraction operation.
The TTM can be considered a special type of tensor contraction wherein one of the tensors is
a matrix (2nd order tensor). Eigen can be integrated into CUDA code to run on GPUs, how-
ever it depends on using CUDA to explicitly allocate memory. Many projects utilize Eigen,
the most notable of which is TensorFlow, the popular machine learning library developed by
Google. We compare our TTM implementations against Eigen’s tensor contraction function
posed as a TTM on three different CPU architectures, showing comparable performance to
this state-of-the-art library.

2.9. Modal Product. Golub and Van Loan refer to the TTM as a special form of
tensor contraction known as a Modual Product[5]. Van Loan has published several works [15]
that have discussed viewing tensor contractions as a series of matrix-matrix multiplications.
This is the foundation of the TTM algorithm that the following implementations are based
upon.

3. Formal Definition and Notation. The formal definition of the Tensor Times
Matrix kernel (TTM), is represented as follows:

Definition 3.1. Given that X is a tensor of order N with dimension sizes: I0 × · · · ×
IN−1 and U is a matrix of size J × In, then ×n denotes a TTM along the n′th dimension
(mode) of X :

Y = X ×n U (3.1)

Where Y is the resulting tensor with dimensions: I0 . . . In−1 × J × In+1 . . . IN−1

The key aspect here is that the tensor’s dimension along which the TTM is computed
changes to match the number of rows of the input matrix. The TTM can be viewed in
terms of matrix multiplication by first matricizing the tensor along the given mode. To
fully understand tensor matricization it is helpful to first define the concept of tensor fibers
as follows

Definition 3.2. Given a tensor X as previously defined, the mode-n fibers are the set of
vectors resulting from holding n’th mode constant and iterating over all other dimensions.
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In other words, the fiber vi0,...,in−1,in+1,...iN−1
= Xi0,...,in−1,:,in+1,...iN−1

, where : is used to
denote all elements along that dimension.

The vectors v in Figure 3.1 are the tensor fibers in that example. Based upon this,
tensor matricization is defined as follows:

Definition 3.3. Given a tensor X , then X(n) denotes the mode-n matricization of X
and is a matrix whose columns are the mode-n tensor fibers of X in column major order.
In other words:

x =

n−1∑

j=0

(

j∏

k=0

ik)→ X(n)[:, x] = vi0,...,in−1,in+1,...iN−1

= Xi0,...,in−1,:,in+1,...iN−1

(3.2)

See Figure 3.1 for the corresponding visual representation. Now the TTM kernel is
presented in terms of matrix multiplication and the resulting computational asymptotic
complexity is analyzed:

Definition 3.4.
Given X ,X(n),U and ×n as previously defined, we have that:

Y = X ×n U ⇐⇒ Y(n) = UX(n) (3.3)

Defining I∗ =
∏N−1
r=0 Ir → I⊗ = I∗

In
, where Ir denotes the size of the r’th dimension of X ,

the resulting asymptotic complexity to calculate Y(n) is:

U ∈ RJ×In , X(n) ∈ RIn×I
⊗ → Y(n) = UX(n) ∈ O(JInI

⊗)

Essentially, the workload of the TTM kernel is equivalent to the product of the dimen-
sions of X and the first dimension of U .
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Fig. 3.1: Matricization of 2× 3× 4 tensor along each mode

4. Motivation.

4.1. HOSVD. With the formal definition firmly in place attention is directed to-
wards the TTM kernel’s primary motivating algorithm, the ST-HOSVD algorithm. The
ST-HOSVD has been applied to a wide range of problems that deal with higher dimensional
data in fields such as bioinformatics and anomaly detection to make the high dimensional
data more amenable to analysis [12] [17]. In addition, the ST-HOSVD algorithm has been
extensively used to compresses these high dimensional datasets. This is especially relevant
for simulations that are capable of generating many terabytes of data. The aforementioned
TuckerMPI [2] applied the ST-HOSVD algorithm to two separate combustion simulation
datasets [9] [11], which respectively required 4.4 TB and 6.7 TB to store before compres-
sion. In these instances, the ST-HOSVD was shown to have compression ratios of 2×105 and

4× 104 for a relative error bound of ||X−X̂ ||||X || < 1× 10−2. Figure 4.1 shows the ST-HOSVD

pseudocode and corresponding example.

The running time of the ST-HOSVD algorithm is dominated by the “Gram” matrix
kernel (line 3) and the TTM kernel (line 8). As previously discussed, the TTM kernel has
an asymptotic complexity of O(JInI

⊗). Similarly, the Gram matrix kernel, given by:

Xn ∈ RIn×I
⊗
, S ∈ RIn×In → S = XnX Tn ∈ O(I2

nI
⊗) (4.1)

Depending on the values of J and In relative to each other, the TTM and Gram matrix
kernel require asymptotically comparable amounts of work. This bears out in practice,
with either of these two kernels dominating the running time of the ST-HOSVD algorithm.
Thus, optimizing these two kernels is integral to optimizing the ST-HOSVD algorithm as
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Algorithm 1 ST-HOSVD

function ST-HOSVD(Tensor X , accuracy
bound ε)
G ← X . Initialize G
for n = 0, 1...N − 1 do

S ← XnX Tn . Gram matrix
[λ, V ]← eig(S)
Un ← V (:, 1 : Rn) . Rn is smallest value

that satisfies ε
G ← G ×n UTn . TTM

F ← U0 . . . UN−1

return G,F
end function

30
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8
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20

Fig. 4.1: ST-HOSVD pseudocode and example of ST-HOSVD of 3’rd order 40 × 30 × 20
tensor. The small 13×8×15 tensor in the center of the matrices is referred to as the “core”
tensor. The surrounding matrices are generally referred to as “factor” matrices.

a whole. The next section details how the optimized TTM kernel was implemented. The
Gram matrix kernel has been developed in parallel to this work.

4.2. Anomaly Detection. We are particularly interested in applying the TTM kernel
to calculate the ST-HOSVD of a symmetric 4th order co-kurtosis tensor [16] to facilitate an
unsupervised approach for detecting anomalies in combustion simulations. In this applica-
tion, each dimension represents a set of spatio-temporal features that vary over the course
of the simulation. For example, Aditya et al [1] demonstrate a combustion simulation that
depends on 12 different chemical species mass fractions and the temperature at each time
step. These features can be used to form a 13× 13× 13× 13 symmetric co-kurtosis tensor
that can be decomposed into a ST-HOSVD to detect anomalous events such as abnormal
temperatures or chemical ratios. In this instance, we want to calculate the ST-HOSVD in
real time and as fast as possible, so that these anomalous events can be acted upon soon
after their inception. We thus optimized our TTM implementation to efficiently handle
these relatively small symmetric tensors.

5. Implementations. We now move onto the technical implementation of the TTM
kernel. Our implementation and discussion thereof is heavily based upon the work of Ballard
et al. [2]. Two values that will be helpful in this discussion are:

Definition 5.1.

I> =

N−1∏

r=n+1

Ir, I< =

n−1∏

r=0

Ir (5.1)

Where I, N and n are as previously defined
Assuming the entries of X are stored in column-major order as a contiguous 1D array, i.e.

the mode-0 fibers are contiguous in memory, then the matrix resulting from the matricization
of X consists of I> submatrices that are contiguous in memory, each with In rows and I<

columns for each n > 1. In other words, each matricization not along the first mode consists
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of a number of contiguous submatrices equal to the product of the dimensions greater than
the mode, where the number of rows of each submatrix is equal to the size of the mode’s
dimension and the number of columns is equal to the product of the dimensions less than the
mode. See Figure 5.1. In the instance that n = 0, i.e. the TTM is calculated along mode-0,
the matricized tensor consists of I> column vectors. As discussed later, this slightly affects
the implementation, making the mode-0 TTM a special case.
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Fig. 5.1: Matricization of 2× 3× 4 tensor along mode-1. Notice how the tensor is stored in
column-major order, but the submatrix is in row-major order.

In this representation of the matricized tensor, the TTM can be viewed as a series of
matrix-matrix multiplications wherein the factor matrix U is multiplied by the individual
submatrices. This has the benefit that no data reordering is necessary if careful attention is
given to the memory layout of the submatrices when doing the matrix-matrix multiplication.
Specifically, the submatrix must either be stored as row-major, i.e. the fibers of the last
dimension are contiguous in memory, or the entire computation must be transposed and
the result stored in row-major order. In the mode-0 case this is not necessary because the
submatrices are actually vectors (mode-0 fibers) and thus already contiguous in memory.
An added benefit of viewing the computation in this manner is that it becomes readily
apparent that we may do these submatrix multiplications in parallel. See Figure 5.2.
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Fig. 5.2: 30× 40× 20× 3 tensor times 15× 20 matrix along mode 2

Taking these arrangements of the submatrices into account, the submatrix multiplica-
tions may be done via a call to a general matrix-matrix multiplication (GEMM) kernel.
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This grants access to the multitude of highly optimized pre-existing linear algebra libraries,
such as BLAS and LAPACK, each of which support general matrix-matrix multiplication.
Furthermore, due to the fact that the submatrix multiplications involve separate contiguous
sections of the input and output tensors, these GEMM calls can be executed in parallel.
Several implementations utilize the system’s installed BLAS/LAPACK DGEMM function.
In the experiments these took the form of Intel MKL and OpenBlas. Maintaining the con-
tiguousness of the submatrices also allows for the use of the KokkosKernels TeamGEMM
function, which is a key component of making a complete Kokkos implementation. Thus, the
implementations discussed in subsequent sections fall into two main categories: KokkosKer-
nels implementations and DGEMM implementations. We also implemented a TTM kernel
that utilizes CUDA’s cuBLAS GEMM function. This combined with the KokkosKernerls
implementations will help ensure that our TTM function will perform well on a wide range
of accelerator architectures, both present and future. See Algorithm 2 for the general pseu-
docode of the TTM algorithm.

Algorithm 2 Tensor Times Matrix(TTM). X(n)[i] denotes the i’th submatrix of X(n).
The format in which X(n)[i] is stored and whether X(n)[i] is transposed depends on the
implementation.

1: function TTM(Tensor X , U , n)
2: [I<, I>]← X . calculate I< and I>

3: X(n) ← X . matricize X
4: if n > 0 then
5: for i = 0 : (I> − 1) do . Change for to parfor in parallel case
6: Y(n)[i] = UX(n)[i] . done via GEMM call using given library

7: else
8: Y(n) = UX(n)

9: Y(n) = UX(n)

. Y(n) stored in memory identically to Y, no extra work needed
10: return Y
11: end function

5.1. Kokkos-Kernels. Over a dozen different working Kokkos based TTM imple-
mentations were developed in our pursuit of a fully optimized TTM kernel. For the sake of
brevity we present only one, genten ttm factor direct. In the results section we refer to this
implementation as the TeamGemm implementation because it primarily utilizes KokkosKer-
nel’s TeamGemm function to do the matrix-submatrix multiplications.

The inputs to the templated genten ttm factor direct function are as follows:

• mode: dimension along which to do the TTM

• tensor: tensor is the tensor X to undergo the TTM. Tensor is of type: TensorT<ExecSpace>.
TensorT is a multidimensional type unique to GenTen and is stored as a 1D Kokkos
View. The entries of the TensorT are stored in column-major order, i.e. entries in
the same column are contiguous in memory. ExecSpace refers to the Kokkos Ex-
ecution space that the TTM uses. This generally either refers to the host (CPU)
execution space or the execution space of a GPU accelerator.

• matrix: predictably matrix refers to the matrix U to multiply with the tensor. It is
of type FacMatrixT<ExecSpace>. FacMatrix is stored as a 2D LayoutRight view.

• ans: ans is the tensor that is used to store the result Y of the TTM.
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Algorithm 3 genten ttm factor direct pseudocode using abbreviated Kokkos syntax.

1: function genten ttm factor direct(TensorT X , FacMatrixT U , mode n, TensorT Y, team size ts, templated
execution space ExecSpace)

2: [I∗, I⊗, In, I
<, I>]← X . calculate values defined in 3.1, 3.3, 5.1

3: [J, In]← U . dimensions of U
4: Kokkos::TeamPolicy< ExecSpace > policy(I>, ts) . define Kokkos team execution policy
5: Kokkos::TeamPolicy< ExecSpace >::member type member type
6: Kokkos::View<ttb real**, Left, Unmanaged> U ′(U .data(), J, In) . convert U to View
7: if n > 0 then

. matricize X
8: Kokkos::View<ttb real**, Right, Unmanaged> X(n)(X .data(), I> ∗ n, I<)
9: Kokkos::parallel for (policy, member type member) do

10: i = member.league rank()
11: X(n)[i] = Kokkos::subview(X(n), iIn : (i+ 1)In, Kokkos::ALL())

. extract i’th submatrix from X(n)

12:
13: Y(n)[i] = Kokkos::subview(Y, iJI< : (i+ 1)JI<) . extract i’th submatrix from Y(n)

14:
15: Kokkos::View<ttb real**, Right, Unmanaged> Y′(n)[i] =

Kokkos::subview(Y(n)[i],J, I<) . Recast Y(n)[i] as 2D LayoutRight unmanaged view
16:
17: KokkosBatched::Gemm<member type,’NT’,’NT’,Team,Blocked> →

invoke(U ′,X(n)[i],Y′(n)[i]) . KokkosKernels TeamGEMM call

18: end parfor
19: else
20: Kokkos::View<ttb real**, Left, Unmanaged> X(n)(X .data(), I> ∗ n, I<) . matricize X
21: Kokkos::parallel for (policy, member type member) do
22: i = member.league rank()
23: X(n)[i] = Kokkos::subview(X(n), Kokkos::ALL(), i : (i+ 1)) . extract i’th vector from X(n)

24: Y(n)[i] = Kokkos::subview(Y, iJI< : (i+ 1)JI<) . extract i’th vector from Y(n)

. KokkosKernels TeamGEMM call
25: KokkosBatched::Gemm<member type,’NT’,’NT’,Team,Blocked>::invoke(U ′,X(n)[i],Y(n)[i])
26: end parfor

27: return Y
28: end function

The genten ttm factor direct function starts by calculating I∗, I⊗, In, I< and I> as seen
in Algorithm 3. The team execution policy is then defined to iterate over each submatrix
in parallel, using the Kokkos::AUTO() function to determine how many threads to devote
to a team. If the mode is not 0, Line 7 then matricizes the tensor by casting it as a 2D
LayoutRight unmanaged view. Note that because the X(n) is an unmanaged Kokkos view,
no explicit data copy is required. In Kokkos syntax, the LayoutRight view is stored in
row-major order, whilst a LayoutLeft view is stored in column-major order. Thus casting
the view in this manner and setting the 2D view dimensions to I> ∗ n, I< effectively trans-
poses the submatrices. Line 8 initiates the Kokkos parallel for-loop in accordance with the
aforementioned team policy. Lines 10-13 extract the submatrix memory addresses from the
matricized tensor and the corresponding submatrix memory regions from the ans tensor.
Finally Line 15 executes the matrix-submatrix multiplication, using team size threads to
do so, and writes the result out into the ans tensor. The mode 0 case requires the same
process with the simplification that no transposition is necessary for the input or output
tensor submatrices.

The KokkosKernels TeamGemm was originally developed for use in the Sandia Parallel
Aerodynamics and Reentry Code (SPARC) [7] project where its primary purpose was to
operate on small (dimensions less than 32×32) matrices in a Computational Fluid Dynamics
(CFD) application. Thus the TeamGemm function that the performance portable Kokkos
implementation relies upon is primarily optimized for small matrix-matrix multiplications.
This becomes readily apparent in the Performance Results section, as in most cases it
outperforms all other implementations for problem sizes where the input matrices are small
enough to fit in cache and higher thread counts, but lags behind for the larger problems on
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lower thread counts. It is also worth noting that the genten ttm factor direct is still under
construction. Work is currently underway to develop a simple heuristic to dynamically
determine the policy team size based upon the number of available threads and the number
of required parfor loop iterations.

5.2. Default DGEMM. The next two TTM functions that were benchmarked utilize
the installed BLAS/LAPACK library of each benchmarked system to facilitate the matrix-
submatrix multiplication. The first, genten ttm parfor dgemm, is similar to the TeamGemm
approach in that it takes advantage of multiple levels of parallelism by utilizing a Kokkos
parfor loop and thread parallelism within the DGEMM function itself. It thus represents
a form of finer grain parallelism. When benchmarking this function careful attention was
given to properly set the OpenMP environment variables to ensure that the function was not
using more threads than specified by the benchmark instance. This is a concern due to the
hierarchical parallelism of using the an optimized BLAS/LAPACK DGEMM function, which
has the potential to automatically use thread parallelism, inside of the Kokkos parallel -
for region. The advantage of this method is that generally BLAS/LAPACK libraries are
more generalized and thus performs better for larger problem sizes than the specialized
KokkosKernerl’s TeamGemm function. Conversely, the disadvantage of the genten ttm -
parfor dgemm function is that it is significantly slower than genten ttm factor direct for
small problem sizes. This is born out in the benchmark results. Additionally, genten -
ttm parfor dgemm does not fully utilize the Kokkos Programming model and thus is not
performance portable.

The second DGEMM TTM implementation, genten ttm serial dgemm, is almost ex-
actly the same as genten ttm parfor dgemm with the exception that the for-loop around the
matrix-submatrix multiplication is serial instead of parallel. This function thus derives all
its parallelism from the builtin thread parallelism of the linked BLAS/LAPACK DGEMM
function.

6. Performance Results and Discussion.

6.1. CPU Results. Timings were generated across Intel Xeon, ARM ThunderX2 and
IBM Power9 CPU architectures as well as NVIDIA Kepler and Volta GPU architectures.
We present timings from 16 × 16 × 16 × 16 and 32 × 8 × 1024 × 128 tensors. The 164

instance was motivated by the aforementioned combustion simulation application, whereas
the 32 × 8 × 1024 × 128 was chosen to demonstrate a slightly larger problem size that has
a wide range of dimension sizes. As will be shown, this problem size highlights both the
strength and weaknesses of our Kokkos based TTM kernel. Interestingly, the comprehensive
experiments of these two problems formed a tensor of their own. In total timings were
generated for each mode of each tensor for at least four different implementations on each
CPU architectures. Not taking varying thread counts into account, this forms a 4×2×4×3
tensor with 96 entries. The portable Kokkos based implementation capable of running on
GPUs was compared with a cuBlas implementation that provided another 32 timing results.
Thus, for the sake of brevity we focused on the results along modes 1 and 2 of the chosen
tensors and restricted ourselves to a maximum of 16 threads. Modes 1 and 2 are the most
interesting because the last mode merely consists of a single GEMM call and the first mode
is a series of matrix vector products. For the 16× 16× 16× 16 problem size, modes 1 and
2 will respectively consist of 162 (16× 16)× (16× 16) and 16 (16× 16)× (16× 162) matrix
multiplications. Similarly, for the 32×8×1024×128 tensor, the TTMs along modes 1 and 2
will respectively consist of 1024∗128 (8×8)×(8×32) and 128 (1024×1024)×(1024×(8∗32))
matrix multiplications. Before starting the experiments, we hypothesized that the portable
Kokkos based TeamGemm function would perform well when the input matrix was small due
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to its originally being optimized for small matrix multiplications. Similarly, we hypothesized
that it would not perform well for large input matrices. As we shall see, this is confirmed
in the experiments.

(a) (16 × 16 × 16 × 16) ×1 (16 × 16) (b) (16 × 16 × 16 × 16) ×2 (16 × 16)

(c) (32 × 8 × 1024 × 128) ×1 (8 × 8) (d) (32 × 8 × 1024 × 128) ×2 (1024 × 1024)

Fig. 6.1: Timings generated on Intel Xeon-2683

Timing results in Figure 6.1 were generated on Kahuna, a heterogeneous Sandia testbed
with 120 dual-socket, 28 Intel E5-2683v3 2 GHz core heterogenous nodes. Each core has
access to a 32K L1, 256K L2 and 35840K L3 cache. Several nodes are also equipped with
Kepler K80 GPUs and one node is equipped with a Volta100 GPU. The Kepler timings were
generated using these GPUs. This server also has access to a Matlab license. Thus we were
able to benchmark the Matlab Tensor Toolbox in addition to Eigen and the DGEMM im-
plementations for comparison to the portable TeamGemm implementation. In this instance
Intel’s MKL was the BLAS/LAPACK library that was linked to the GenTen build and pro-
vided the DGEMM kernel for the serial and parfor DGEMM implementations. Developed
by Intel, MKL performs well on it’s native Intel architecture for the larger 1024 × 1024
input matrix in Figure 6.1(d) compared to both TeamGemm and Eigen. For the problem
instances in Figures 6.1(b) and 6.1(c) where the input matrix is much smaller and able to fit
in L1 cache, the TeamGemm implementation achieves the fastest runtime for higher thread
counts. Figure 6.1(c) demonstrates that the Matlab Tensor Toolbox’s TTM function and,
in turn, Matlab’s built-in GEMM routines performs poorly when the input matrix is small.
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In this instance the other implementations performed comparatively better.

(a) (16 × 16 × 16 × 16) ×1 (16 × 16) (b) (16 × 16 × 16 × 16) ×2 (16 × 16)

(c) (32 × 8 × 1024 × 128) ×1 (8 × 8) (d) (32 × 8 × 1024 × 128) ×2 (1024 × 1024)

Fig. 6.2: Timings generated on ARM64 ThunderX2

Timing results in Figure 6.2 were generated on Mayer, a Sandia testbed with 40+ dual-
socket, 28 ThunderX2 ARM64 core nodes. Each core has access to a 32K L1, 256K L2
and 35840K L3 cache. In this case the DGEMM kernel is provided by OpenBlas, an opti-
mized BLAS library that supports optimizations for both ARM Power9 architectures. As
seen in Figure 6.2(d), the DGEMM implementations based upon the OpenBlas kernel and
Eigen both scaled quite well for the larger problem size. Unsurprisingly, the TeamGemm
implementation did not perform as well for the large input matrix. In all cases the sequen-
tial performance of the TeamGemm implementation was slower by at least a factor of two.
However, similar to the Intel results, Figures 6.2(a), 6.2(b) and 6.2(c) show the TeamGemm
performs well for higher thread counts when the input matrix is small, eventually becom-
ing the fastest on 16 threads for both modes 1 and 2 of the 164 tensor. Furthermore, the
DGEMM implementations and, in turn, the OpenBlas DGEMM kernel, show worse perfor-
mance the smaller the input matrix is. From this we can deduce that the OpenBlas GEMM
kernel is not sufficiently optimized for instances when at least one of the matrices is small
enough to fit in cache.

Timing results in Figure 6.3 were generated on Weaver, a Sandia testbed with 10 dual-
socket, 40 core heterogeneous nodes. Each core supports up to 4 threads, allowing a total
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(a) (16 × 16 × 16 × 16) ×1 (16 × 16) (b) (16 × 16 × 16 × 16) ×2 (16 × 16)

(c) (32 × 8 × 1024 × 128) ×1 (8 × 8) (d) (32 × 8 × 1024 × 128) ×2 (1024 × 1024)

Fig. 6.3: Timings generated on IBM Power9

of 160 threads per node. Each node is also equipped with a Volta100 GPU. The Volta GPU
timings for the portable TeamGemm implementation were generated using these GPUs.
Previously on the ARM architecture, the TeamGemm implementation lagged behind Eigen
for single thread sequential execution. On the IBM Power9 architecture their roles are re-
versed, with the portable TeamGemm outperforming Eigen in all cases. Similar to the ARM
server, the Power 9 server utilizes OpenBlas for its optimized BLAS/LAPACK library. For
single threaded sequential execution, the DGEMM implementations that rely upon Open-
Blas’s DGEMM function outperformed both Eigen and the TeamGemm implementation.
However, as seen in Figures 6.3(a), 6.3(b) and 6.3(c), the DGEMM implementations and
OpenBlas DGEMM function do not scale well for small input matrices. Based upon the
ARM results, this and the fact that the DGEMM implementations scale well for the large
input matrix sizes in Figure 6.3(d) is relatively unsurprising.

Figure 6.4 compares the team gemm TTM implementation to a comparably sized DGEMM
call on the aforementioned Intel and IBM servers. The thread counts were increased based
upon the core counts of each server in order to demonstrate threads counts higher than
16. As previously mentioned the (16 × 16 × 16 × 16) ×1 (16 × 16) will consist of 162

(16 × 16) × (16 × 16), which is equivalent to (16 × 16) × (16 × 163) in terms of flop count.
From this we see that the team gemm TTM implementation attains DGEMM like per-
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(a) (16 × 16) × (16 × 163) vs (16 × 16 × 16 × 16) ×1 (16 × 16)

(b) (16 × 16) × (16 × 163) vs (16 × 16 × 16 × 16) ×1 (16 × 16)

Fig. 6.4: Comparison of TTM vs DGEMM times. MKL benchmarked on Intel Xeon-2683.
OpenBlas benchmarked on IBM Power9

formance compared to both MKL and OpenBlas for a co-kurtosis problem size. In both
instances, MKL and OpenBlas show degraded performance when the number of threads is
greater than the dimensions of the input matrix. On the Power9 architecture the team -
gemm implementation does not show significant performance degradation, especially when
compared to OpenBlas. The team gemm implementation shows significantly more perfor-
mance degradation on the Intel architecture, but still less than MKL. From this we can
deduce that neither OpenBlas nor MKL are optimized for our intended problem size. This
is consistent with the previous results of the DGEMM TTM implementations that relied
upon the OpenBlas and MKL DGEMM kernels.

6.2. GPU Results. GPU results were generated on NVIDIA Volta and Kepler GPUs
as seen in Tables 6.1, A.1, A.2 and A.3. Similar to the CPU results the GPU results
of the TeamGemm implementation performed comparably to those utilizing the cuBlas
function when the input matrix was small, but performed poorly in comparison to the
cuBlas implementation for larger input matrices. In this instance the first two dimensions
are close to those of our targeted co-kurtosis problem size. The rest of the comprehensive
GPU timings are listed in Appendix A.
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Volta

Mode 0 1 2 3
TeamGemm 0.0096 0.0014 0.7212 0.0075

cuBlas 0.0126 0.0010 0.0108 0.0017

Table 6.1: (32× 8× 1024× 128)

7. Conclusions and Future Work. We are motivated by the need for a fast, perfor-
mance portable TTM kernel optimized for the problem size encountered in combustion sim-
ulations. Several implementations have been compared based upon runtime across several
CPU and GPU architectures, demonstrating the performance portability of the KokkosKer-
nels TeamGemm implementation for our intended problem size. Attaining performance
portable implementations of both the TTM and Gram matrix kernels is crucial to attaining
a ST-HOSVD algorithm with the same performance and characteristics. Such a ST-HOSVD
implementation would be an invaluable tool to a wide variety of researchers in fields that
deal with high dimensional data, especially those working with many small higher order
tensors that arise in combustion simulations.

8. Acknowledgements. We would like to thank Sivasankaran Rajamanickam of San-
dia National Laboratories for his invaluable Kokkos advice. It was originally his idea to
investigate using the Kokkos TeamGEMM function in our implementations.

REFERENCES

[1] K. Aditya, H. Kolla, W. P. Kegelmeyer, T. M. Shead, J. Ling, and W. L. Davis, Anomaly
detection in scientific data using joint statistical moments, Journal of Computational Physics,
387 (2019), p. 522–538.

[2] G. Ballard, A. Klinvex, and T. G. Kolda, Tuckermpi: A parallel C++/MPI software package for
large-scale data compression via the tucker tensor decomposition, CoRR, abs/1901.06043 (2019).

[3] J. Choi, X. Liu, and V. Chakaravarthy, High-performance dense tucker decomposition on gpu
clusters, in SC18: International Conference for High Performance Computing, Networking, Storage
and Analysis, 2018, pp. 543–553.

[4] H. C. Edwards, C. R. Trott, and D. Sunderland, Kokkos: Enabling manycore performance porta-
bility through polymorphic memory access patterns, Journal of Parallel and Distributed Comput-
ing, 74 (2014), pp. 3202 – 3216.

[5] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press,
third ed., 1996.

[6] G. Guennebaud, B. Jacob, et al., Eigen v3. http://eigen.tuxfamily.org, 2010.
[7] M. Howard and S. Arunajatesan, Sparc v. 8/17/2016, version 00, 10 2016.
[8] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM review, 51 (2009),

pp. 455–500.
[9] H. Kolla, X.-Y. Zhao, J. H. Chen, and N. Swaminathan, Velocity and reactive scalar dissipation

spectra in turbulent premixed flames, Combustion Science and Technology, 188 (2016), pp. 1424–
1439.

[10] J. Li, C. Battaglino, I. Perros, J. Sun, and R. Vuduc, An input-adaptive and in-place approach
to dense tensor-times-matrix multiply, in SC ’15: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, 2015, pp. 1–12.

[11] S. Lyra, B. Wilde, H. Kolla, J. M. Seitzman, T. C. Lieuwen, and J. H. Chen, Structure of
hydrogen-rich transverse jets in a vitiated turbulent flow, Combustion and Flame, 162 (2014).

[12] L. Omberg, G. Golub, and O. Alter, A tensor higher-order singular value decomposition for integra-
tive analysis of dna microarray data from different studies, Proceedings of the National Academy
of Sciences, 104 (2007), pp. 18371—-18376.



B. Cobb, E. Phipps, H. Kolla and Ü. Çatalyürek 203
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Appendix A. GPU Timing Results. Comprehensive GPU timing results are listed
in Table A.1, Table A.2, and Table A.3.

Volta

Mode 0 1 2 3
TeamGemm 9.4E-05 9.2E-05 2.1E-04 8.5E-05

cuBlas 6.8E-05 2.5E-05 1.8E-05 1.4E-05

Table A.1: (16× 16× 16× 16)

Kepler

Mode 0 1 2 3
TeamGemm 0.0434 0.0075 3.0010 0.0575

cuBlas 0.049305 0.010967 0.066396 0.010112

Table A.2: (32× 8× 1024× 128)

Kepler

Mode 0 1 2 3
TeamGemm 0.00020 0.00011 0.00018 0.00011

cuBlas 0.000151 0.000181 0.000044 0.000026

Table A.3: (16× 16× 16× 16)
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AN ANALYSIS OF USER EXPERIENCE AND SOFTWARE
ENGINEERING IMPROVEMENTS IN A CHARACTERIZATION DATA

AND INVENTORY MANAGEMENT SYSTEM FOR RADIATION
DETECTORS
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Abstract. As part of the suite of catalogs developed by Data Mining, Analysis, and Modeling Cell
(DMAMC) members to support the U.S. Department of Homeland Security (DHS) Countering Weapons of
Mass Destruction (CWMD) Office mission, the Instrument Characterization Catalog (CharCat), intended
for the storage and visualization of characterization data pertaining to radiation detectors used by CWMD
test scientists, requires further iteration with respect to user experience and software engineering. CharCat
is an online reference platform, presented below are updates to this platform and the reasoning for doing so.

1. Introduction. The Instrument Characterization Catalog (CharCat) is a web ap-
plication fully developed at Sandia National Laboratories to provide easy access and visu-
alization of radiation detectors data.

Fig. 1.1: The Instrument Characterization Catalog is part of the hierarchy of online
applications developed by DMAMC to facilitate the reuse of CWMD collected test data.

As part of the Data Mining, Analysis, and Modeling Cell (DMAMC) suite of catalogs,
CharCat supports the U.S. Department of Homeland Security (DHS) Countering Weapons

∗Rensselaer Polytechnic Institute, aldenrford@gmail.com
†Arizona State University, dmartin123098@gmail.com
‡Sandia National Laboratories, cjgiese@sandia.gov
§Sandia National Laboratories, bcabrer@sandia.gov
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of Mass Destruction (CWMD) Office mission by enabling the reusability of characterization
data pertaining to instruments used and tested by CWMD test scientists. As such, the
catalog entries are identified by the instrument’s unique serial numbers, which permits the
application to be also used as an inventory of the CWMD detectors’s operational status.

CharCat’s initial development phase concluded in fiscal year 2019 (FY19), with the
completion of the application’s first version and its deployment in an external-facing SNL
server. In FY19, CharCat was already conceived with three main components: an inventory
home page, the individual detector pages, and a data wizard page for new data ingestion.
The development work reinitiated in the second half of FY20 has focused on making the
application more robust, flexible and user-friendly. Specifically, extensive work has been
done to:

• create a framework to easily accommodate changes in data organization,
• refactor the inventory and characterization data ingestion process,
• add exhaustive user guidance features to enhance the users experience.

Biweekly live demonstrations to the CharCat working group, integrated by DMAMC mem-
bers from the Pacific Northwest National Laboratory (PNNL), the National Institute of
Standards and Technology (NIST), the U.S. Naval Research Laboratory (NRL) and CWMD,
have served to dynamically absorb their feedback and guide the design and development pro-
cess.

2. ARF:System Design. CharCat utilizes the MERN (MongoDB, Express.js, Re-
act.js, and Node.js)1 web development tech stack. A principal advantage of the MERN tech
stack is that it exclusively uses JavaScript, which allows developers to seamlessly transition
between working on client-side and server-side code. In addition, JavaScript provides an ef-
ficient way to handle asynchronous behavior without stalling the code through Promises and
async/await, an important feature on both the server-side and client-side for an application
like CharCat that relies on client-server-database communication chains.

2.1. Front-End. The front-end interface is handled by React.js, a JavaScript library
that allows developers to write components, which are reusable modules that can be nested
inside other React components. This makes React ideal for handling single-page web ap-
plications such as CharCat. As a result, CharCat’s front-end is split into a tree of React
components that each define a subset of the application’s client-side behavior and appear-
ance. Among these, there are three main views - an inventory page that lists instruments, a
data wizard that supports uploading data, and an instrument page that displays character-
ization data (see Figure 2.1). While CharCat is fundamentally a single-page application, it
utilizes React Router2 to provide URLs to access the primary views. CharCat’s front-end
also makes use of Material UI3, a library of pre-built React components following Google’s
Material design principles, to create a visually appealing front-end.

2.2. Server. CharCat utilizes Express.js, a server framework built for the Node.js
runtime environment, as its server. Express.js allows developers to define API routes that
support CRUD (create, read, update, delete) operations, serving as a bridge between the
client and the database. In the case of CharCat, Express.js forms the backbone of how the
application stores and displays instrument data by exposing ways to read and manipulate
instrument data.

2.3. Database. CharCat uses MongoDB, a popular NoSQL database, to store instru-
ment data. As opposed to SQL databases, NoSQL databases such as MongoDB allow data

1mongodb.com, expressjs.com, reactjs.org and nodejs.org
2reactrouter.com
3material-ui.com
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Fig. 2.1: Left-to-right: Inventory page, Data Wizard, Instrument page

to be stored as loose-form JSON as opposed to a fixed-form table. This corresponds well
with CharCat’s data model (see Figure 2.2), as it allows parent data elements to store an
array of references to their child elements. CharCat splits its data into four distinct levels:

• Instruments, which contains inventory data about individual instruments,
• Datasets, which contain metadata about a series of tests performed on an instru-

ment,
• Data elements, which serve serve to group individual test data points by the type

of data they represent, and
• Entries, which represent individual data points from tests.

These different levels of data are stored in separate collections (save for data elements,
which are stored within the datasets collection as a means to group the dataset-entries
relationship). In addition, CharCat also has a ”metadatas” collection to store metadata
information used in rendering the client, such as the various tooltips present on the client,
and an ”images” collection used to store the instrument images.

In order to ensure that all the data being stored is in a format that’s compatible with
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Fig. 2.2: CharCat splits its data into a tiered tree.

CharCat, CharCat uses Mongoose4 to enforce specific schema upon all entries into the
database. A major focus for this period of performance was updating these schemas, which
was accomplished with help from migrate-mongo5 to ensure that all data already in the
database was updated to match the modern schema.

2.3.1. Database Image Collection. In terms of the back-end functionality of the
Image Gallery component and potential future use cases for images on the front-end, it’s
also important to address specifically how MongoDB is storing and organizing this data.
Under the CharCat database, another collection called “images” is created for the sole
purpose of storing image data. The schema of entries to this collection follow the model of
first, image buffer data; second, array of serial numbers; and third, image type (such as jpeg,
png, etc.). In effort to streamline the design of this collection, another important constraint
is the idea that the collection will only store unique images. Leveraging this and the unique
identifier tag that is associated with MongoDB entries, it is possible to create, delete, and
edit entries on the basis of the image url alone, since it is unique to the collection by design.
Now, with the help of ExpressJS, the database collection can be updated to associate a
new serial number with a unique image, to removing the image altogether. Specifically, the
options presented to the user in the Image Gallery component designate the possible actions
that can be taken when updating the collection.

In terms of how the image url is encoded, images are first stripped of their type and then
converted to buffer data for storage. When retrieved, they are converted back into a base64
format with their type appended to the front of the string for displaying on the browser. As
compared to how images were stored and retrieved in past versions of CharCat, this process
represents both a time and space complexity improvement. Previously, images were stored
on the server’s filesystem and requests were made to retrieve images from these folders on
the server. In terms of scalability and security, by storing images as binary data on the
database, the application is now more isolated from the server (in the case file permissions
change, etc.) and therefore more portable for transporting to other servers for hosting. This
is important for the client side as well as the retrieval and storage process is quicker and in
line with how other instrument data is stored on the database, making development easier.

3. ARF:User Experience. Because CharCat’s role is as an interface to ingest, store,
and provide data to scientists, it is important to optimize its user experience. A major com-
ponent of this period of performance was updating the data ingestion interface to meet this

4mongoosejs.com
5npmjs.com/package/migrate-mongo
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requirement, including adding user assistance features and redesigning several key elements
of the interface.

3.1. Tooltips. One essential usability addition is CharCat’s tooltips. Due to the tech-
nical nature of CharCat’s data fields, tooltips provide CharCat with an unobtrusive way to
provide the user with additional guidance, containing text ranging from static descriptions
of data fields to dynamic explanations of errors. For tooltips present in the front-end web
application, CharCat uses Material UI tooltips with custom styling, while for tooltips for
Excel templates (explained in Section 3.4) utilize Excel comments.

Fig. 3.1: Data Wizard tooltips provide additional information when the user hovers over a
field.

Fig. 3.2: Tooltips present in Excel provide additional information about important columns.

3.2. Inventory Data. In addition to the aforementioned tooltips, the development
team added a number of additional features to improve the inventory data user experience.

One such enhancement was the introduction of navigation buttons that allow a user
to switch between the Inventory, Data Wizard, and Instrument pages while preserving the
selected instrument (see Figure 3.3. This represents a major efficiency improvement for
this common task, as the previous workflow to toggle between these views required clicking
”Data Wizard” or ”Inventory” and searching/scrolling to the desired instrument.

Fig. 3.3: Navigation buttons present in the instrument header allow users to quickly swap
between app views while keeping an instrument selected.

The ”Data Wizard” view experienced a significant redesign. Both the instrument header
and inventory data forms now utilize Material UI’s autocomplete component to add a drop-
down list of suggested options to a number of text fields (see Figure 3.4). These options
are generated based on data already in the database, which allows the user to fill out fields
faster such as ”Current Location” and ”Owner” if the text they want is already present.

This period of performance also introduced a number of error-checking features to the
inventory data and instrument header forms. If the user enters text into a field that’s
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Fig. 3.4: Autocomplete allows the user to quickly select an option for a text field already
present in the database or enter their own custom text.

not currently in the database but similar to text that is in the database (calculated with
a Levenshtein Distance algorithm), the form will display a warning (see Figure 3.5). In
addition, this period of performance also introduced summary pages to the instrument
header and inventory data form that appear right before a user submits the form (see Figure
3.6). These summary pages contain a list of changes and display any warnings, providing
the user with the opportunity to correct errors before submitting the form.

Fig. 3.5: Error warnings allow the user to catch common errors such as typos.

Fig. 3.6: The summary page allows users to review their changes before saving them.

3.3. Image Gallery. Another important component added in this iteration of Char-
Cat is the Image Gallery component. Images represent an effective piece of information for
communicating data better in some respects than other mediums. In order to streamline
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the process of adding, deleting, and editing images on the application, the development
team found it useful to isolate this behavior from the client filesystem as much as possible.
For example, given a detector model is added two or more times to the database, of dif-
fering serial numbers, then it’s natural to assume that an identical image could be used to
represent this detector. The cost to the user of uploading this image from the filesystem
increases multiplicatively under the current section process for each identical model added
to the database. In effort to reduce this time complexity in the improved selection process,
it would be useful to maintain a set of all unique images ever uploaded to and associated
with a detector in the database, and to present a clear tool for the user to draw these im-
ages from in the case another identical detector model is added. This is the idea behind the
Image Gallery component.

The component itself is split into the option to add images from the client filesystem
and the option to access the global set of unique images. If choosing the latter, the user
is presented with a dual layer, searchable component. The first layer acts as an overview
displaying thumbnails of unique images and the second, more descriptive layer, shows all
models and serial numbers associated with these thumbnail images. In effect, the component
acts as a front-end portal into the database collection which stores the images. On top of
this, certain features, such as automatic highlighting of currently associated instruments
and shading of tags, serves to improve the user experience.

Fig. 3.7: A visual of the image gallery overview/description layers and the image selection
process.

3.4. Characterization Data. The characterization data ingestion process saw a sig-
nificant revision during this period of performance. In addition to general software engi-
neering improvements described in Section 4, the user experience is now significantly more
efficient. CharCat uses Excel templates filled out by the user for characterization data
ingestion, so these changes primarily focus on improving this aspect of the user experience.

First and foremost, CharCat now allows the user to define Excel templates for instru-
ments rather than relying on instruments already in the database. Prior to this period
of performance, instrument templates were manually assembled and manually associated
with instruments without a client-side interface. Now, the user defines a list of valid data
elements for an instrument through a client-side drop-down menu (see Figure 3.8) and an
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Excel template is dynamically generated with the appropriate worksheets using ExcelJS6.

Fig. 3.8: A Material UI multiple-select autocomplete component allows users to define an
instrument’s Excel template.

The worksheets now include additional user assistance features. These include an in-
struction sheet (see Figure 3.9), drop-down menus (Figure 3.10), tooltips (Figure 3.2), and
in-sheet data validation (Figure 3.11). These features serve to ensure that the test scientists
are able to fill out the Excel templates correctly and avoid server-side validation headaches.

Fig. 3.9: An instruction sheet explains how to use the Excel template.

Fig. 3.10: Certain Excel fields have a drop-down of valid options.

The Excel upload process has also been significantly revised. When the user uploads
a template, CharCat’s server performs validation on the data. If there are any errors not
caught by the template (such as using an outdated template version or missing a required
field), CharCat provides the user with a summary page of all error messages (see Figure
3.12), allowing the user to find and address the problematic fields. At upload time, CharCat

6npmjs.com/package/exceljs
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Fig. 3.11: Entering invalid data triggers an error message.

also now converts all data in certain columns to a default unit standardized across datasets,
which allows users to submit data with alternate units that their data might be recorded
in.

Fig. 3.12: Validation errors are displayed to the user in a summary page.

CharCat now supports the full set of CRUD (create, read, update, delete) operations
for datasets. If the user wishes to modify an existing dataset, they can download one or
more datasets for an instrument as a prefilled template through the ”Instrument” page (see
Figure 3.13). Reuploading a dataset already in the database will overwrite the old dataset,
allowing users to modify a prefilled template and upload it in order to fix errors in a dataset.
CharCat also allows users to delete datasets through a ”delete dataset” button.
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Fig. 3.13: The instrument page allows users to delete datasets as well as download and edit
them.

4. Software Engineering. This period of performance also saw CharCat adopt a
greater focus on software engineering best practices as it moved away from its prototype
stage. While software engineering best practices are helpful for any software engineering
project, CharCat requires an extra focus on maintainability because its periods of perfor-
mance are separated by many months and feature a mostly different team each time.

4.1. Clean Code and Refactoring. In order to accomplish this goal, large sections
of CharCat’s code were refactored to adopt principles of clean code, such as descriptive
function and variable names, comments explaining the purpose of code and how to use
it, and ”Don’t Repeat Yourself”. A major improvement was cutting down the amount of
repeated code dramatically. For instance, the instrument header component used to be
split into two components for its editable and uneditable variants. This meant that any
changes to the instrument header had to be repeated in two locations. By merging the
instrument header, any changes only need to be made once, dramatically improving ease of
maintenance. This sort of consolidation was repeated in a number of places throughout the
inventory and characterization ingestion processes, as elaborated in Section 4.2. In addition,
many React components were refactored into numerous specialized components, a process
designed to significantly reduce the length of individual files. Excessively large source files
made it difficult for developers to understand legacy code, so this improvement makes the
code easier to maintain.

4.2. Data-driven Design. As part of the ”Don’t Repeat Yourself” paradigm, many
of the refactored components utilize a data-driven design structure. For these aspects of
CharCat, their important information is stored as a large JavaScript object, which is then
parsed by functions to accomplish tasks such as rendering the client and processing a form.

A major example of this is the ”Inventory Data” component. All metadata regarding
the inventory is stored in one unified file, such as the layout of the fields, what fields they
correspond to in the database, what type of data is stored in the field, the tooltip associated
with the field, etc. This data is utilized in the inventory data detail, the inventory log, and
the inventory data form. As a result, to change the structure of inventory data, you just
need to change one section of the ”Inventory Field Data” file rather than update completely
different code in three separate locations. In a similar manner, Excel templates are controlled
through their own data object. This object defines how to generate Excel templates and
also defines how to parse Excel templates. Previous versions of CharCat relied on a premade
Excel template and a prototype Python file to parse the Excel templates, which made it
incredibly time-consuming to update the Excel templates. Now, an Excel template can be
updated by just changing a small segment of code in a JavaScript object.

Aside from simplifying the process of editing layout and templates, data-driven design
also dramatically reduces the size of functions required to accomplish tasks. For instance,
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while the template data files are several thousand lines long, they’re parsed by only a few
hundred lines of functions. Smaller functions like these are significantly easier to write, edit,
and test because their behavior is more concise.

5. Technology Research. In the fashion of web applications, continuous improve-
ment in order to maintain a healthy ecosystem is the current trend. In light of this, the
ability to quantize and measure website traffic is increasingly important. The most com-
mon approaches to monitoring and updating a web application rely on the existence of a
user management and user activity tracking system. With the use of these technologies,
“CharCat” will be able to monitor application behavior and designate user privileges going
forward throughout its lifetime.

So what are these technologies? Briefly, user management systems are used to con-
trol access to system resources. For example, a user management system is important in
the areas of password resets, deleting, creating, or blocking users, and gathering user data.
Specifically, CharCat may find a user management system useful for delineating adminis-
trative privileges to maintain client features such as access to and deletion of images and
instrument data. On the other hand, user activity tracking is the monitoring of user be-
havior as defined under a user management system. Monitoring behavior could pertain to
key-logging, network packet inspection, recording user activity, or analyzing user error logs.
It is useful for quantifying actions on the application as malicious or permissible, discovering
trends through data analysis, or tracing steps backwards from a discovered bug or error. In
a way, user activity tracking allows for continuous development by making a record of each
iteration of beta testing of the application and pinpointing important problems to address.

Thanks in large part to the ecosystem behind the NodeJS framework, there exist many
software packages available for download. In terms of creating a user management system,
user authentication is an essential building block. PassportJS is a useful middleware in-
tended for implementation in ExpressJS that when combined with MongoDB serves this
purpose. Simple, but effective, this combination provides a user management system to
build a user activity tracking system upon. From here, another software package named
Node-Analytics opens CharCat into the realm of user monitoring. This is useful for track-
ing page visits, user events, and other useful analytics information.

From researching these technologies, there exist an almost infinite array of solutions to
generating these systems for use in CharCat. In order to limit scope, software packages
should work seamlessly into the MERN stack, be actively maintained, as well as present
themselves as a lightweight approach.

6. Conclusions. As a component of DMAMC’s suite of applications, it is important
that CharCat has an efficient, user-friendly interface and can be maintained and adapted
to handle the challenges and requirements posed by its role. In this period of performance,
we successfully redesigned the data ingestion user experience to be more user-friendly and
robust, improved the maintainability of the source code by applying software engineering
best practices, and laid the technology research groundwork for future enhancements.
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VERIFYING QUANTUM CIRCUIT EQUIVALENCES USING PROVE-IT,
AN INTERACTIVE THEOREM PROVING ASSISTANT

JOAQUÍN E. MADRID LARRAÑAGA∗∗AND WAYNE M. WITZEL††

Abstract. It is challenging to ensure that a quantum program is a faithful implementation of a quantum
algorithm after it is tailored and optimized for specific quantum hardware. While quantum computation lit-
erature often focuses on the general problem of proving that two arbitrary quantum programs are equivalent,
which has exponential complexity with respect to the number of qubits, we consider the simpler, practical
problem of verifying each step in a series of small transformations to certify that a final program is equivalent
to the original one. We use quantum circuits as an intuitive visual representation of quantum programs
and extend Prove-It (a Python-based, Sandia-developed interactive theorem prover) with quantum circuit
proof capabilities. This tool could be interfaced with an automated quantum compiler/optimizer or be used
interactively by a quantum information expert for exploratory purposes. Using a small number of basic
facts about circuit equivalences, Prove-It will be able to solve the verification problem for most practical
purposes with linear time complexity.

1. Background. Just as classical computation, at a fundamental level, can be un-
derstood as a sequence of logical gate operations acting on classical bits (zeros and ones),
quantum computation is understood as a sequence of logical gate operations acting on quan-
tum bits (qubits). For example, a Pauli X gate is a generalization of a classical NOT gate,
both of which will transform an input state of “zero” to an output state of “one” and vice-
versa. A common way of representing these logic gates within a larger quantum algorithm
is with a quantum circuit. A quantum circuit is a visual representation of a time sequence
of quantum operations that is performed on one or more qubits. It shows the logic gate
operations acting on the qubits in a specific sequence; rows represent qubits and columns
represent time that is ordered going left to right (see Figure 1.1).

Fig. 1.1: An example of a quantum circuit generated using Prove-It. A quantum circuit
is a visual representation of a quantum algorithm, in this case, a quantum teleportation
algorithm. Being displayed are input/output cells from executing interactive Python within
a Jupyter notebook using the Prove-It library with our quantum circuit extensions.

When an abstract quantum algorithm is implemented on specific quantum hardware,
it must be compiled into an implementation that respects the specific hardware limitations

∗∗Occidental College, jmadridlarra@oxy.edu
††Sandia National Laboratories, wwitzel@sandia.gov
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and may be optimized for the best performance. Accordingly, one must perform a series
of transformations going from an initial quantum circuit that is a literal translation of the
algorithm into a final quantum circuit that is tailored to the specific hardware. Various
tools exist that perform compilation and optimization for such purposes [12, 11, 13]. How
can one be assured, however, that the output of such software is a correct implementation
of the circuit that was provided as the input? There is active research [4, 10] to address the
challenging problem of blind circuit equivalence verification, trying to determine whether
two arbitrary circuits are equivalent. This is a hard problem in general, suffering from
the exponential scaling of quantum states with respect to the number of qubits. Some
of the research [2, 3] is restricted to the stabilizer formalism only applicable to quantum
circuits that can be simulated efficiently by classical computers. Alternatively, we propose
to verify each of the basic transformations of a series of compilation/optimization steps,
concatenating the derivation to construct a full proof of quantum circuit equivalence. That
is, instead of treating the problem in a blind sense, we consider the simpler problem of
guided quantum circuit equivalence verification.

In this article, we show progress in developing a tool for this purpose. This tool could
eventually be incorporated into compilation/optimization tools so they generate certificates
to verify equivalence between the input and output quantum circuits. Verified optimization
on arbitrary-sized circuits using symbolic reasoning has been previously demonstrated [9];
however, our tool is unique in allowing users to work directly with convenient, intuitive math-
ematical notation while verifying and certifying quantum circuit equivalence. It therefore
has potential to be particularly valuable for human-guided quantum circuit optimization as
well as theoretical explorations over the space of quantum algorithms and implementations.

2. Prove-It. Prove-It is a python-based interactive theorem proving assistant being
developed at Sandia National Laboratories in collaboration with the University of New
Mexico [14]. The overall aim of Prove-It is to provide a tool for users to prove statements
with the same level of ease as an informal proof done by hand. While this paper will not
delve into the intricacies of Prove-It as a whole, there are a couple of over-arching principles
of Prove-It that are important to discuss.

First, Prove-It is an open source software designed to allow users to add axioms and
prove theorems of their own choosing. Theorems are created from expressions formatted
in LATEX as convenient mathematical notation. There is an important distinction between
simply creating an expression and proving that this expression is a true statement. Prove-
It will allow a user to create any type of expression, and even use it as an assumption,
regardless of whether or not it is provable. Some expressions may be proven automatically
by calling the “.prove()” method and listing a set of assumptions. In nontrivial instances,
the user will need to guide the proof generation through a sequence of derivation steps. As
a convenience, theorems may be added and used in the system as a “conjecture,” allowing
them to be used to prove other statements; these will also be marked as “conjecture” until
all dependent theorems have been proven down to the axiomatic level. In order to help
users determine whether or not a proof is valid, Prove-It generates an intuitive, easy to read
proof, serving as a certificate, that is check-able by both humans and computers. With
this in mind, we can easily incorporate and express quantum circuits and related theorems
thanks to Prove-It’s flexibility.

Prove-It utilizes Python’s object-oriented programming ability to create a convenient
notation using common mathematical operators such as Add(), InSet(), and Exists(), which
take in the user’s arguments to create the desired expressions. Using this convention, users
can create any type of new operation, implement the Prove-It specific methods, and integrate
the new operation into Prove-It’s library. The LATEX output for these new operations may
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be implemented freely to generate new mathematical notation at will. By importing the
\QCircuit LATEX package [6], we are able to generate expressions that use quantum circuit
notation without changing any of the core Prove-It utilities or the manner in which proof
certificates may be confirmed.

Lastly, Prove-It’s unique “expression range” (ExprRange) feature allows us to create
and instantiate operations with arbitrary, non-specific arity. An ExprRange is an indexed
iteration designed to mimic the “. . .” commonly used in informal proofs to denote a collection
of items of variable size. In Prove-It, an ExprRange is of the form am, . . . , an, where a, m,
and n can be defined to create another indexed iteration (Figure 2.1(a)), instantiated to
be a specific list (Figure 2.1(b)), or some combination of both. We can use ExprRanges in
any context, including new notations created by a user. ExprRanges prove to be integral
to the creation of a general quantum circuit theorem that can be instantiated to a specific
quantum circuit.

(a) Instantiating with another generic range (b) Instantiating a specific list

Fig. 2.1: Instantiating “tuple len” theorem from the proveit.core expr types theory
package to illustrate the flexibility of Prove-It’s ExprRanges. Being displayed are input/out-
put cells from executing interactive Python within a Jupyter notebook using the Prove-It
library.

(a) Null circuits created by doubling the gate.
Null because the second gate reverses the change
made by the first gate

(b) A control gate needs an input of 1 to have
any effect so an input of 0 nullifies the control
gate

Fig. 3.1: Examples of some null gates discussed in Garcia-Escartin and Chamorro-Posada’s
“Equivalent Quantum Circuits” [7] . Being displayed are input/output cells from executing
interactive Python within a Jupyter notebook using the Prove-It library with our quantum
circuit extensions.
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3. Equivalent Transformations. One process for optimizing a general algorithm for
specific quantum hardware involves using a series of known quantum equivalences to trans-
form the general algorithm so that it is optimized. Garcia-Escartin and Chamorro-Posada
offer an extensive study of commonly used quantum equivalences [7]. They break down
these equivalences into several categories: null gates, control reversal, deferred measure-
ment, quantum classical substitution, and CNOT rearrangement.

Null gates handle the instance where a collection of gates have no effect on a qubit
(Figure 3.1). This can be in reference to two gates that cancel each other out, such as two
Hadamard gates, or any expression where the input is the same as the output such as a
control gate where the control qubit is zero. These null gates can easily be replaced with
either a blank wire or the Identity operator.

Control reversal refer to a situation where the control gate and the controlled gate can
be reversed, either by themselves or with the help of additional gates (Figure 3.2). These
reversals, like any other circuit equivalence can be verified with a matrix like Figure 3.2(b).

(a) A controlled Z gate can be easily reversed
because either the control or the Z gate can be
said to be the control.

(b) Evidence for this reversal is shown by the
matrix operator above. If the order of the con-
tents of each Ket (which represent the control
input and the gate input) are reversed, we still
end up with the same matrix.

Fig. 3.2: Z gate reversal and matrix evidence.

Deferred measurement takes into account the fact that a classically controlled gate that
is controlled by a measurement gate is equivalent to a circuit where the measurement gate
is moved farther along the wire and the classically control gate is replaced by a quantum
control gate (Figure 3.3).

Fig. 3.3: A circuit with a measurement gate as a control is computationally equivalent to a
circuit with a deferred measurement gate.

Quantum classical substitution relies on the principle that strictly classical operations
are preferable to classically controlled quantum operations, which in turn are preferable to
strictly quantum operations. This preference motivates the replacement of a controlled gate
with a measurement gate or other equivalent classical options (Figure 3.4).

Lastly, CNOT gate rearrangement refers to various equivalences of circuit composed
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Fig. 3.4: Replacing quantum elements with equivalent classical elements is preferred to
save quantum resources. Image from Garcia-Escartin and Chamorro-Posada’s “Equivalent
Quantum Circuits” [7].

solely of CNOT gates which are entirely analogous to classical circuit equivalences due to
the linearity of CNOT and every other unitary operation (Figure 3.5).

Fig. 3.5: An example of an equivalent CNOT rearrangement [7].

These equivalence rules allow us to replace portions of a larger circuit with an equivalent
expression while maintaining the equivalence of the overall circuit. In this fashion, we can
transform a general circuit to one that is optimized for specific quantum hardware. By
using Prove-It to verify the validity of these transformations, we can verify that the entire
optimized circuit is equivalent to the original circuit. Because we are only concerned with the
portion of the circuit we are replacing, this process can be used for circuits of arbitrary size
which allows us to generalize this process for any quantum circuit. Thus, the computation
required for the verification of a quantum circuit equivalence has been linearized with respect
to the size of the quantum circuit (e.g., number of quantum gate operations).

4. Circuit Implementation in Prove-It. By following the quantum equivalence
framework outlined above, we can create theorems in Prove-It that define these equiva-
lences. Afterwards, we can create additional theorems that allow equivalent pieces of a
circuit to be swapped out with each other while still maintaining the overall equivalence of
the circuit. With these theorem additions, we can concretely verify these transformations
within circuits of an arbitrary size, thereby verifying that the resulting quantum circuit is
equivalent to the first. In order to achieve this, several methods were added to Prove-It’s
theory of physics.quantum package to visually express quantum circuits, gates, literal
circuit elements, wires, and multi-qubit gates. These methods allowed us to express any
type of quantum circuit in Prove-It using commands listed in Table 4.1. In addition, the
implementation of multi-qubit gates allowed us to create general theorems using Prove-It’s
ExprRanges that can be instantiated with circuits of arbitrary size (Figure 4.1).

A multi-qubit gate is formatted as a box around the label of the gate with vertical
wires connecting each member of the multi-qubit gate. For example, in Figure 1.1 we see a
specific multi-quibit gate containing a control and a target gate. However, a generic multi-
qubit gate that uses Prove-It’s ExprRange feature, is formatted differently than an explicit
multi-qubit gate. When expressing a general multi-qubit gate acting on a non-specific set of
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Circuit() Defines a circuit element, takes in an
ExprArray().

Gate(X) Takes in a gate label and outputs a Gate
element.

MultiQubitGate(X, Set(one, two)) Takes in a gate label and the positions of
the other gates contained in the
MultiQubitGate.

IdentityOp() The identity operator. Produces a wire
or an “I” gate depending on the
indicated style.

MEAS Produces a measurement gate.
SPACE Produces an empty space.

Table 4.1: Common commands for creating a Circuit element in Prove-It.

Fig. 4.1: Our temporal circuit substitution theorem that allows us to replace an equivalent
portion of a valid (true) circuit of arbitrary size. The theorem states that for any valid
quantum circuit, labeled in a manner that represents a true matrix equation for transforming
input states to output states, the replacement of a portion of this circuit with an equivalent
circuit of the same size results in another valid circuit. This is done with the use of generic
multi-qubit gates and Prove-It’s ExprRanges.

qubits, we display both a label for the gate as well as the expression that represents the set
of qubits involved in the operation (Figure 4.2(a)). A multi-qubit gate acting on a specific
set of qubits will only contain the label for the gate operation (Figure 4.2(b)). However,
a multi-qubit gate acting on only one qubit is formatted with an explicit set in order to
differentiate it from a gate (Figure 4.3). This is important for showing the reduction of a
multi-qubit gate to a regular gate.

Using these multi-qubit gate properties, we have been able to create our temporal -
circuit substitution theorem (Figure 4.1) which will allow us to replace any portion of a
valid (true) circuit with another equivalent circuit. A valid circuit is one that is labeled
to express a quantum circuit that represents a true matrix equation for transforming the
input quantum wavefunction to the output quantum wavefunction. As an example of a valid
circuit,

|ψ〉 U U |ψ〉 (4.1)

(under proper assumptions regarding ψ and U) represents the tautology U |ψ〉 = U |ψ〉 (that
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(a) An example of a generic multi-qubit gate us-
ing Prove-It’s ExprRange feature. Each box rep-
resents a gate. To the left of the large curly brace

(
{

) is the gate operation, indicated by the in-

dexed A variable. To the right of the large curly
brace is the set of qubits that the multi-qubit
gate is acting on, indicated by the indexed S
variable.

(b) When we have a specific collection of multi-
qubit gates, we don’t need to show the set of
qubits that the multi-qubit gate is acting on be-
cause it is indicated by the vertical wires.

Fig. 4.2: Above we display both a generic multi-qubit gate (4.2(a)) and a specific multi-qubit
gate (4.2(b)). Being displayed are input/output cells from executing interactive Python
within a Jupyter notebook using the Prove-It library with our quantum circuit extensions.

Fig. 4.3: Our “unary reduction” theorem for reducing a multi-qubit gate that contains one
gate to a single gate. This theorem is important for instantiating a general multi-qubit gate
theorem (like Figure 4.1) with elements that are not multi-qubit gates. Analogous theorems
for Inputs, Outputs, and the Identity Operator have also been created. Being displayed are
input/output cells from executing interactive Python within a Jupyter notebook using the
Prove-It library with our quantum circuit extensions.

is, U applied to the input |ψ〉 gives the output U |ψ〉). The temporal circuit substitution
theorem is expressed using only multi-qubit gates but these will be reduced to single-qubit
gates as appropriate. To do this, we created several “reduction theorems” that will take
elements contained in a multi-qubit gate and reduce them to the actual element (Figure
4.3). For example, a multi-qubit gate that consists of only one gate can be reduced to a
single gate. Similarly, an input Ket or output Ket that is contained in a multi-qubit gate
can be reduced to just an input or output Ket. These reductions, among others, allow us to
instantiate the generic temporal circuit substitution theorem with any circuit components
in order to create a specific equivalent circuit. In Figure 4.4 we instantiate our temporal -
circuit substitution theorem to replace the null gates with the identity operator within a
simple, valid circuit identity. Behind the scenes, Prove-It uses our reduction theorems to
convert multi-qubit gates to single-qubit gates.
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Fig. 4.4: The instantiation of our temporal circuit substitution theorem to replace the null
gates with the identity operator. Being displayed are input/output cells from executing
interactive Python within a Jupyter notebook using the Prove-It library with our quantum
circuit extensions.

(a) The first eight steps of the proof for replacing
a null gate with the identity operator. Steps 3-
11 (9-11 are omitted for ease of readability) are
internal theorems used to verify that the length
of the ExprRange and the elements it is being
replaced with are the same length.

(b) Steps 12-21 for the proof for replacing a null
gate with the identity operator. Contrary to the
first eight steps, the majority of these steps are
internal theorems used for the reduction of multi-
qubit gates to other circuit elements. Steps 12
and 14 are reducing a multi-qubit gate to a gate
and steps 20 and 21 are reducing multi-qubit
gates to the input and the output.

Fig. 4.5: The first 21 steps from Prove-It’s proof output for Figure 4.4 (omitting 9-11 for
ease of readability).

Figure 4.5 shows the first 21 steps of Prove-It’s proof output for this particular instan-
tiation. Steps 4-11, 14, 15, 19, and 20 are internal theorems used for verifying the length of
the expressions being instantiated. Steps 12, 13, and 16-19, 21 are all reduction theorems
used to transform a multi-qubit gate into the circuit element that is being instantiated. The
full proof output is 58 steps. This is fairly long for a single instantiation, but Prove-It must
satisfy quite a few internal requirements for this particular example. Each step is human-
readable in convenient mathematical notation, and it was all handled via automation.
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5. Conclusions. In the previous section we were able to demonstrate the circuit re-
placement capabilities of Prove-It with a simple null gate replacement. However, the theo-
rems that were used are general enough to allow for the replacement of a sub-circuit within
a larger circuit of arbitrary size. With this strategy, we can perform general quantum circuit
transformations linear in time with respect to the number of expressed quantum operations
because we are solving the guided quantum circuit equivalence problem rather than the
general blind equivalence problem. With Prove-It’s unique ability to represent expressions
of arbitrary length using the ExprRange feature, we can represent circuits with arbitrary
size, creating a powerful tool for visual quantum program verification.

6. Future Directions. In the future, we plan to create a more robust library of
commands to customize the circuits further. Currently, users can create only the most basic
elements of a circuit. More complex elements such as bell states, other types of measurement
gates, or circuit labels have yet to be implemented. In addition, we plan to create many
more theorems in order to truly verify the equivalence of a circuit transformation in Prove-
It. While we were able to prove that the replacement of a portion of a circuit was valid,
we did this by assuming that the two circuits were equivalent to begin with. Additional
theorems will allow us to actually prove that the circuit being replaced is equivalent to the
replacement. Furthermore, there are extensive formatting issues with the \QCircuit package.
For example, circuits on either side of an operation (such as the ∧ symbol in Figure 4.1) are
formatted so that the top of the circuit is flush with the operation instead of being vertically
centered with respect to the operation. As a result, many of the figures represented in this
paper were edited with an external LATEX editor in order to improve ease of readability.
However, we plan to modify the \QCircuit package to improve the automatic formatting
of the circuits. Furthermore, it may be useful to integrate an existing piece of quantum
optimization software into Prove-It. This will allow users to automatically generate both an
optimized circuit as well as a Prove-It proof certification to verify that the optimized circuit
is equivalent to the original. Finally, we would like to extend Prove-It to support quantum
algorithm verification using a variety of reasoning strategies that work together seamlessly
in addition to the visual quantum circuit transformation technique we have discussed here.
There are other diagramatic reasoning [5, 8], symbolic [15], and Feynmann path integral [1]
approaches that could be incorporated.
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New Mexico for his advice and help throughout this process. This work was supported by
the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research under the Quantum Computing Applications Team (QCAT) program.
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EVALUATION OF ONEAPI FOR FPGAS

NICHOLAS MILLER∗, JEANINE COOK† , AND CLAY HUGHES‡

Abstract. The high-performance computing (HPC) ecosystem increasingly supports heterogeneous
architectures and customization. Field programmable gate arrays (FPGA) are among the options be-
ing considered due to their ability to both adapt to individual workloads and as prototype vehicles for
application-specific accelerators. However, adoption has been limited due to the difficulty in programming
these devices. To mitigate this, vendors are introducing frameworks based on embedded domain specific lan-
guages (eDSLs), such as SYCL. This work takes the first step in evaluating one of these new DSLs, DPC++,
using DOE proxy applications to identify programmability gaps and performance on Intel FPGAs. Initial
testing is being done with the MiniAMR application from the Mantevo suite, focusing on the 7-point stencil.

1. Introduction. As Moore’s law comes to an end, we are seeing an increasing sup-
port for heterogeneous architectures that include domain- and application-specific accel-
erators. Application-specific accelerators (ASAs) are particularly appealing for many of
the kernels of interest to the Advanced Simulation and Computing (ASC) Program, which
supports the Department of Energy’s (DOE’s) National Nuclear Security Administration
(NNSA) programs. These types of accelerators, which map applications directly to hard-
ware, have already demonstrated promising performance and energy improvements for HPC
kernels [1, 9, 5]. As such, next-generation specialized computing platforms could significantly
accelerate mission applications compared to traditional central processing units (CPUs),
general purpose accelerators like graphics processing units (GPUs), and even domain-specific
accelerators like tensor processing units (TPUs). Unfortunately, ASAs have historically
faced challenges for HPC, including a development environment not amenable to agile ap-
plication and hardware co-design, system-integration and deployment complexity, and the
fact that ASAs targeting a single application are ill-suited for platforms, like the NNSA’s,
that must support many diverse applications.

While ASAs built on reconfigurable field-programmable gate arrays (FPGAs) can ad-
dress the latter challenge, only recently have HPC vendors embraced customization, which
is reducing cost, fabrication, and integration challenges. Traditional HPC vendors are in-
vesting heavily in this area, embracing architectures like ARM and RISC-V that support
customization, developing protocols for coherent accelerator and CPU communication (e.g.,
CXL, CCIX), as well as investing in new fabrication technologies like multi-chip modules that
support physical integration of commodity and custom hardware. This renewed investment
is driving innovations in hardware and software, as vendors recognize the need to provide
both performance portability and languages extensions targeted at application developers,
such as Intel’s oneAPI [3] toolchain. However, the promise of performance portability and
easy-to-use language extensions, with regard to FPGAs, remains unproven; system-level
issues like data movement between a CPU and FPGAs must still be addressed and we do
not yet know if FPGAs for Sandia would be effectively reconfigurable or reusable across
Sandia’s application domains. This research is the first step in answering these questions.

2. Background. In this section we will explore oneAPI and how it looks to create
a programming model that both reduces the programmer’s need to know digital logic de-
sign while also reducing the development time compared to traditional hardware description
language (HDL) programming. Additionally an overview of the tools provided for program-
ming using oneAPI along with a simple example of how data movement is handled is shown.

∗University of Central Florida, nickmiller@knights.ucf.edu
†Sandia National Laboratories, jeacook@sandia.gov
‡Sandia National Laboratories, chughes@sandia.gov
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Furthermore a discussion of related works is included.

2.1. oneAPI. oneAPI [3] is an open source programming model being developed by
Intel with the intent of providing a single API that can be used on many different platforms,
as shown in Figure 2.1. The core of oneAPI is a new programming language, DPC++, that
builds upon the SYCL specification from The Khronos Group [7], which itself builds upon
OpenCL [6], a standard used to describe hardware in a high level language, by providing
a number of language extensions. oneAPI also includes many libraries that implement
algorithms for applications such as video processing, data science, deep learning, and more.

Fig. 2.1: oneAPI Layer Cake [3]

Historically, the traditional FPGA design workflow required knowledge of digital logic
principles and hardware design; the oneAPI toolchain obviates the need for these skills.
oneAPI looks to ease the burden of programming an FPGA through abstraction of the
hardware, automating synchronization of data and associated operations, simplifying data
transactions, and providing containers for more complex operations. Through these prac-
tices, oneAPI effectively removes the requirement of deep circuit-level knowledge and allows
for a wider range of developers to have access to FPGA platforms. This is done by extending
the SYCL interface with DPC++, which itself works as an abstraction layer for OpenCL.
DPC++ handles the data transactions which would typically need to be done explicitly by
the programmer in OpenCL while still allowing for the creation of kernels using OpenCL,
albeit with a reduction in code complexity due to further abstraction of the kernel creation
process. oneAPI further expands on SYCL by adding its own USM (unified shared memory)
system used to provide pointer support on accelerator hardware and numerous extensions
described in the oneAPI specification [3].

One flaw of oneAPI is the lack of documentation. Because it is still in beta, there
is not a large library of examples to learn from. Additionally, the documentation can be
disjointed between reading oneAPI, OpenCL, SYCL, and DPC++ documentation. This
makes it difficult to get a full picture of how the program execution works and how to fully
optimize code. To further compound the issue, there is a lack of information concerning
exactly how the compiler picks the optimizations that it does and in-depth details of the
hardware created by it.

2.2. Abstraction Upon Abstraction. DPC++ provides an abstraction layer to the
hardware. By having this layer of abstraction, development time is greatly reduced com-
pared to working with Verilog or VHDL. This layer of abstraction also alleviates the need
to fully understand the hardware. For example, to create an accelerator in Verilog, one
would typically need to create a PCIe interface that can send/receive PCIe packets, create
a mechanism to parse the contents of those packets, manage the data coming to and from
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the host, and then implement the algorithm. All of this is followed by a timing analysis and
other performance enhancing optimizations to increase performance. Each of these steps
is tedious and requires a deep understanding of hardware and standards, even with intel-
lectual property (IP) blocks, illustrating the difficulty presented by the traditional FPGA
development workflow. By using the oneAPI toolchain, most of these steps are abstracted
away so that one only needs to write their algorithm in a C++-like language and compile.
But there are some drawbacks to this level of abstraction.

The benefit to the traditional approach is that the programmer will have greater control
of the resources being used and the ability to optimize it at a very low level in the design.
Although the DPC++ compiler provides optimization passes, what they actually do at
the register-transfer level (RTL) is often opaque and gives users very little direct control.
Another downside of the DPC++ toolchain is the loss of the ability to use some of the
FPGAs built in IP blocks, users are restricted to the interfaces described in the OpenCL
Board Support Packages (BSP). However, these tradeoffs may be worthwhile given the
learning curve and time needed to create an application. While the traditional approach
can be done using block diagrams, there will still be a need to write in an HDL. This can be
difficult as HDLs can take a long time to learn and become proficient in as they are unlike
most high-level languages.

2.3. Data Movement and Placement. Modern architectures and programming lan-
guages require developers to handle data synchronization and structuring of program exe-
cution as to not cause issues with data dependencies. This can become a major time sink in
development as keeping track of where the data is at all stages of execution is non-trivial.
Additionally, handling how and when to transfer the data poses additional complexity. This
is where oneAPI attempts to ease the development process through automation of these
tasks. An example DPC++ code snippet is shown in Listing 1.
1 // Create the b u f f e r and a c c e s s o r to f i l l the b u f f e r
2 s y c l : : bu f f e r<int , 1> f p g a b u f f e r ( range<1>( b u f f e r S i z e ) ;
3 auto a c c e s s o r = f p g a b u f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : r ead wr i t e >(cgh ) ;
4 // F i l l i n g i t with example data
5 f o r ( i n t i = 0 ; i < b u f f e r S i z e ; i ++){
6 a c c e s s o r [ i ] = i ;
7 }
8 // Device queue submit
9 queue event = dev ice queue . submit ( [ & ] ( s y c l : : handler& cgh ) {

10 //The FPGA needs i t ’ s own a c c e s s o r to the data
11 auto f p g a a c c e s s o r = f p g a b u f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : r ead wr i t e >(cgh ) ;
12 cgh . s i n g l e t a s k<c l a s s fpga ke rne l >( [=]() {
13 i n t sum = 0 ;
14 //Summing the data as an example computation
15 f o r ( i n t i = 0 ; i < b u f f e r S i z e ; i ++){
16 sum += f p g a a c c e s s o r [ i ] ;
17 }
18 // s t o r e the sum at the beg inning o f the array to reuse the b u f f e r f o r wr iteback
19 f p g a a c c e s s o r [ 0 ] = sum ;
20 } ) ;
21 } ) ;
22 // Return the sum computed by the FPGA
23 return a c c e s s o r [ 0 ] ;

Listing 1: Example Code Snippet

In this example, a chunk of data needs to move from the CPU to the FPGA and then
back before execution can continue. Using DPC++, we can create a buffer on the host
and send that data to the FPGA. Initially the CPU fills the buffer with the data it wants
computed on by using an accessor to the buffer on line 6. This is done sequentially and will
not call upon the device queue until the for loop is finished. Once the kernel is submitted to
the device as seen at line 9-21 the execution of the program can continue asynchronously as
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the CPU can continue execution while the FPGA completes its computations. Asynchronous
execution, however, does stop at line 23 due to the buffer being accessed again. A blocking
call to the accessor is made which cannot resolve until the FPGA is fully completed with its
buffer accesses at lines 16 and 19. By using a buffer, the data does not need to be explicitly
copied to and from the FPGA but instead is moved implicitly as each resource makes a
request to use the data.

2.4. Tools. The central tool of the oneAPI toolchain is the DPC++ compiler itself.
This is what most of oneAPI is built around as it is what creates the FPGA designs by
leveraging the Quartus Prime software. This compiler uses LLVM/Clang as a base and
adds the necessary components to efficiently interpret DPC++ into an OpenCL run time
and FPGA design. The toolchain additionally provides the ability for users to perform
emulation of a program, to check correctness of code. This is a very helpful capability as
the compile times for this are much lower than that to create the full design. This allows
for rapid development and testing without having to wait for the hours long compile times
for the full design. However, this does have its faults as it cannot be used for profiling the
expected performance of the program and the emulation may not always give the exact
same result as hardware. For example, our test applications use float and double types; in
emulation mode, the results are correct but when run on the FPGA floating-point division
for both single and double precision were not IEEE754 compliant. The toolchain also creates
reports based on the generated hardware design that shows the hardware usage, the pipelines
created, and basic optimization data such as the latency for load and stores. This can be
a useful tool when optimizing the code and finding pipeline stalls. Intel recommends using
VTune for in-depth profiling. However in the early stages of this project it did not provide
sufficient information to identify bottlenecks in program execution and was not used in this
stage of the project but it is planned to be explored in future work. In place of VTune,
CLILoader [2] was used to intercept OpenCL calls. This tool can show when kernels are
queued, submitted, and executed by the OpenCL run time as shown in Figure 2.2. This
tool provided insight into how the SYCL API calls were being interpreted by OpenCL run
time calls and to see a timeline of their executions.

Fig. 2.2: CLILoader Output

2.5. Previous Work. Previous work has looked at the performance of OpenCL com-
pared to CPU, GPU, and FPGA HDL devices. In [10] the authors translated a 3D fast
fourier transform into an FPGA design using OpenCL. They found that while they could
get better performance than CPU, GPU, or HDL designs they could only do so by not
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using a full OpenCL created system but instead using it to create blocks, which were later
integrated into their design. Further research such as [8] found that while an FPGA design
was on average slower than a GPU in implementing a Smith-Waterman algorithm, it was
still found to be competitive in performance with 1.56-3.78x better power efficiency. In [11]
a discussion of how to optimize OpenCL for data throughput for a convolutional neural
network is given compared to a handcrafted design.

Because SYCL is a relatively new standard, its performance has not been as thoroughly
studied as OpenCL. SYCL becomes an attractive option for handling the data transactions
and dependencies as described in [4] where it was found that the explicit data movements
of OpenCL produced comparable performance results to those that were implicitly made by
SYCL when using the same OpenCL kernel to do handwriting recognition.

3. Experimental Setup. For testing oneAPI for FPGAs, the Mantevo proxy applica-
tion miniAMR [12] was chosen. miniAMR models an adaptive mesh refinement application
that is usually run across multiple compute nodes. The code was created in a way to allow
the calculation stage of the program to be exchanged with practically any grid computa-
tion that the programmer chooses but the default behavior is one that computes a 7-point
average over the entire grid. This default case is used for all experiments. The program
flow calculates the average in between communication of ghost values between nodes and
fault tolerance checks. While this is not an ideal application for an FPGA to accelerate due
to its low data reuse and high data dependency, its small code base, and straight-forward
implementation does allow for the early understanding and programming using oneAPI.

The goal for this paper was to compare the performance of an Arria 10 FPGA devel-
opment board (intel a10g pac) to a modern processor, an Intel Xeon Gold 6128 CPUs at
3.40GHz. All code was compiled using the oneAPI beta-08 dpcp++ compiler. To make the
comparison, execution time was the metric selected to represent performance. To measure
the execution time the built-in timer of miniAMR was used. Each experiment was run
ten times and then averaged to get the runtime data. Slowdown was computed from the
runtime data collected. The device utilization statistics came from the dpc++ compiler
generated hardware reports. All experiments were run using the resources avilable on the
Intel DevCloud.

Starting from a base conversion of the C-reference code of miniAMR into dpc++, ex-
periments built upon one another. The first experiment combined the memory transactions
between the host and the FPGA, which caused the area overhead on the FPGA to greatly
increase which created the need to reduce the memory usage on the FPGA by reducing the
amount of persistent data used in the kernel. Further performance increases were found by
reducing the need to make memory conversions on the host side by storing all arrays as 1D
arrays instead of 4D arrays due to the SYCL buffer needing the be 1D. Finally, buffering
the kernel execution dependencies allowed for a more constant stream of kernel executions.
After the code was optimized loop unrolling was done in order to observe the effects of
having multiple kernel pipelines.

4. Results. This section discusses the modifications made to miniAMR and the impact
that each of the optimization attempts had on performance. It should be noted that these
optimizations are not intended to show the best way to optimize this application, as this
study is still on-going, but to show how development proceeded. All comparisons are against
the reference design running on the Xeon host processor with a single thread. In addition,
AVX-512 extensions were evaluated for the reference design but it was found that the run
time was slower than without them, so they are not included in the evaluation. In addition,
the first port of the code is omitted in the discussion below because it had a slowdown of 249x
relative to the reference implementation of miniAMR running on a Xeon. Code snippets for
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all optimizations are provided in Appendix A. An overall slowdown comparison, relative to
the Xeon, is shown in Figure 4.1 and resource utilization on the Arria 10 device is shown in
Figure 4.2. The following subsections describe the cumulative optimizations for this code
while the base code can be seen at Listing 4 and Listing 5.

Fig. 4.1: Slowdown Relative to CPU

Fig. 4.2: FPGA Device Utilization

4.1. Combined Memory Transactions. The optimization that provided the largest
performance boost was to combine all of the variable computations in a block into a single
communication and computation step, as shown in Listing 6 and Listing 7 repectively.
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By doing this, the number of calls to the SYCL runtime was reduced by 40x compared
to the previous iteration of the code. These calls are used for communicating with the
FPGA – submitting kernels to the command queue, waiting for responses, and transferring
data. This resulted in a major run time decrease from the 249x slowdown of the base case
down to 37x slowdown, as shown in Figure 4.1. This is primarily due to the fact that
the previous execution time was limited by the latency of the SYCL runtime call latency.
However, from Figure 4.2, it also increased the resource usage on the device, particularly
the RAM usage because all 40 variables must be maintained in the local memory of the
FPGA to complete the computations. This did not result in a commensurate increase the
other resource utilizations as a single pipeline was still being used for the 7-point stencil.

4.2. Reduced Local Memory. This optimization was an attempt to reduce the ex-
plosion of BRAM consumption introduced in Section 4.1. The kernel modifications are
shown in Listing 8. Instead of storing all variables on the FPGA at the same time, only
the variable being currently worked on were stored in local BRAM cells. This reduced the
BRAM utilization while keeping the rest of the device utilization relatively the same. This
had a negligible affect on the overall run time, reducing the slowdown to 33x.

4.3. Flattening. This optimization attempts to further reduce the overhead of kernel
and data management on the host side. The DPC++ programming language only supports
1D arrays inside of its buffers but, in miniAMR, the block data arrays are maintained as 4D
arrays of [var][x][y][z]. This wreaks havoc with buffer creation because the 4D array must be
converted to a 1D. This also results in additional storage overhead because a temporary array
must be created for each kernel execution to hold the data going to and coming from the
FPGA and complicates the algorithm because the data from the FPGA must be converted
back to the 4D array and placed in the host memory, this results in a blocking call instead
of relying on the buffer destructor, which triggers an automatic blocking update to the host
memory. The modifications to how arrays are accessed in the entire code base allowed for
a reduce amount of code for the setting up the data to be sent to the FPGA as can be
seen in Listing 2. Due to the decreased memory movement and time spent transforming
the array on each call, a drastic reduction in run time was seen, bringing the slowdown to
13x compared to reference with no increase in resource usage. This shows the importance
of making the data structures for both the host and FPGA align properly as even with the
speedup seen we have no increase in FPGA utilization.

4.4. Buffering. Buffering the communication and execution of the kernels can dras-
tically improve performance when the kernel execution is long enough to hide the commu-
nication and SYCL runtime call latency. For our application, this is true as long as we are
computing on a sufficient number of blocks at the same time. To set this up the program
needs to be able to call the next kernel while the previous kernel is still executing. This
is a fairly simple process as there is no longer a need to do any array conversion after the
previous flattening optimization as can be seen in Listing 3. Buffer creation now uses a
host pointer to the block data, which takes an insignificant amount of time compared to
the kernel execution. For this optimization, there is no performance difference compared
to the flattened experiment since they are both still operating on a single block. To show
the difference that kernel buffering can make, another experiment, buffered multiple blocks,
was run with an object passing through the grid. This causes multiple blocks to need to be
computed upon. This test had up to 583 blocks at a single time, allowing for the buffering
of each block between kernel executions and shows a considerable speedup at no increase of
utilization as this is still a host side optimization. This optimization brings the slowdown
to 2.4x that of the host CPU. Furthermore, the kernel code can be kept nearly the same as
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shown in Listing 9.

4.5. Unrolling. The final optimization that we will discuss is an FPGA-side optimiza-
tion of unrolling the outermost loop to create multiple pipelines that compute on variables
independently. This showed a diminishing return in that after only creating 2 pipelines
there was no speedup to be seen, while the device utilization increased. The cause for this
is still under investigation but may be be due to reaching a cap on the bandwidth usage of
the PCIe interface, the global memory system of the FPGA not being able to feed data to
the pipelines fast enough, or data dependencies.

5. Future Work. The future work of this is to evaluate a larger number of proxy ap-
plications to find the functional usability of FPGA acceleration using the oneAPI toolchain.
The approaches learned over the course of the miniAMR porting study will help inform
the best approaches to take with other proxy applications. Additionally, a deeper under-
standing of the profiling tools, such as Intel’s VTune, is needed in order to assure that the
code is fully optimized to a production-ready state. While this paper did look at DPC++,
a further evaluation of the libraries that are included in oneAPI is necessary to see how
they may reduce the burden of programmers and the performance that they can provide.
Furthermore a comparison of FPGA performance will be evaluated against both CPUs and
GPUs for future proxy application development.

6. Conclusion. This paper presents an example for the development of a mini-app
port to oneAPI. The programming model reduced the amount of time that it would take
to produce a similar accelerator design using an HDL while producing results that showed
a 2.4x slowdown compared to the reference design. For the fastest run time, the device
utilization of the FPGA was still under 25% usage for BRAM and under 10% for all other
resources, which would allow for additional algorithms to be implemented on the same
design. While the design did not show a speedup compared to the reference, it still showed
hopeful results as it was not considered to be an application that was expected to show
speedup due to its data dependencies and low data reuse. The programming model for this
design is considerably easier and required less of a background in digital logic design but
still allowed for many optimizations to be tested.

7. Acknowledgements. The authors would like to thank Courtenay Vaughn and
Simon Hammond from Sandia National Laboratories for their input on the miniAMR proxy
application and the Center for Research into Novel Computing Hierarchies (CRNCH) at
Georgia Tech for providing access to their Arria 10 nodes.
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Appendix A. Code Snippits.

In this appendix, we list key code snippits:

1 f o r ( i n t in = 0 ; in < s o r t e d i nd e x [ num ref ine + 1 ] ; in++) {
2 bp = &blocks [ s o r t e d l i s t [ in ] . n ] ;
3 s y c l : : range<1> num array{ s t a t i c c a s t <s i z e t >(var max ∗
4 ( x b l o c k s i z e + 2) ∗ ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2) ) } ;
5 {
6 s y c l : : bu f f e r<double , 1> i n p u t b u f f e r (bp−>array , num array ) ;
7 f p g a k e r n e l ( i n p u t b u f f e r ) ;
8 }
9 }

Listing 2: Flattened Arrays Stencil

1 std : : vector<s y c l : : bu f f e r<double , 1>> i n p u t b u f f e r ;
2
3 f o r ( i n t in = 0 ; in < s o r t e d i nd e x [ num ref ine + 1 ] ; in++) {
4 bp = &blocks [ s o r t e d l i s t [ in ] . n ] ;
5 i n p u t b u f f e r . push back ( s y c l : : bu f f e r<double , 1>(bp−>array ,
6 s y c l : : range<1>( s t a t i c c a s t <s i z e t >(var max ∗ ( x b l o c k s i z e + 2) ∗
7 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2 ) ) ) ) ) ;
8 f p g a k e r n e l ( i n p u t b u f f e r [ in ] ) ;
9 }

Listing 3: Buffered Stencil
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1 f o r ( i n t in = 0 ; in < s o r t e d i nd e x [ num ref ine + 1 ] ; in++) {
2 bp = &blocks [ s o r t e d l i s t [ in ] . n ] ;
3 f o r ( var = 0 ; var < var max ; var++) {
4 s y c l : : range<1> num array{ s t a t i c c a s t <s i z e t >(( x b l o c k s i z e + 2) ∗
5 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2) ) } ;
6 // c r e a t e a b u f f e r that goes to the fpga
7 double ∗ inputArray = new double [ ( x b l o c k s i z e + 2) ∗
8 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2 ) ] ;
9 // c r e a t e a b u f f e r that comes from the fpga

10 double ∗ outputArray = new double [ ( x b l o c k s i z e + 2) ∗
11 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2 ) ] ;
12 // f l a t t e n the 4d array to a 1d array f o r the b u f f e r
13 f o r ( i n t i = 0 ; i <= x b l o c k s i z e + 1 ; i++)
14 f o r ( i n t j = 0 ; j <= y b l o c k s i z e + 1 ; j++)
15 f o r ( i n t k = 0 ; k <= z b l o c k s i z e + 1 ; k++)
16 inputArray [ k + ( z b l o c k s i z e + 2) ∗ ( j + ( y b l o c k s i z e + 2) ∗ i ) ]
17 = bp−>array [ var ] [ i ] [ j ] [ k ] ;
18 s y c l : : bu f f e r<double , 1> i n p u t b u f f e r ( inputArray , num array ) ;
19 {
20 s y c l : : bu f f e r<double , 1> ou tpu t bu f f e r ( outputArray , num array ) ;
21 f p g a k e r n e l ( i n p u t b u f f e r , ou t pu t bu f f e r ) ;
22 }// ou t put bu f f e r de t ruc to r c a l l e d here
23 // wr i t e the data back to the block array
24 f o r ( i n t i = 1 ; i <= x b l o c k s i z e ; i++)
25 f o r ( i n t j = 1 ; j <= y b l o c k s i z e ; j++)
26 f o r ( i n t k = 1 ; k <= z b l o c k s i z e ; k++)
27 bp−>array [ var ] [ i ] [ j ] [ k ] = outputArray [ k + ( z b l o c k s i z e + 2) ∗
28 ( j + ( y b l o c k s i z e + 2) ∗ i ) ] ;
29 }// i n p u t b u f f e r de t ruc to r c a l l e d here
30 }
Listing 4: Base Stencil

1 void f p g a k e r n e l ( s y c l : : bu f f e r<double , 1>& i n p u t b u f f e r ,
2 s y c l : : bu f f e r<double , 1>& o utp ut bu f f e r ) {
3 // Device queue submit
4 queue event = dev ice queue . submit ( [ & ] ( s y c l : : handler& cgh ) {
5 // Create FPGA s i d e a c c e s s o r s to the b u f f e r s
6 auto a c c e s s o r i n =
7 i n p u t b u f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : r ead wr i t e >(cgh ) ;
8 auto a c c e s s o r o u t =
9 o ut put bu f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : d i s c a r d w r i t e >(cgh ) ;

10 cgh . s i n g l e t a s k<c l a s s S t e n c i l k e r n e l >( [=]() {
11 double work [ 1 2 ] [ 1 2 ] [ 1 2 ] ;
12 double l o c a l a r r a y [ 1 2 ] [ 1 2 ] [ 1 2 ] ;
13 f o r ( i n t i = 0 ; i <= 11 ; i++)
14 f o r ( i n t j = 0 ; j <= 11 ; j++)
15 f o r ( i n t k = 0 ; k <= 11 ; k++)
16 l o c a l a r r a y [ i ] [ j ] [ k ] = a c c e s s o r i n [ i ] [ j ] [ k ] ;
17 f o r ( i n t i = 1 ; i <= 10 ; i++)
18 f o r ( i n t j = 1 ; j <= 10 ; j++)
19 f o r ( i n t k = 1 ; k <= 10 ; k++)
20 work [ i ] [ j ] [ k ] = (
21 l o c a l a r r a y [ i − 1 ] [ j ] [ k ] +
22 l o c a l a r r a y [ i ] [ j − 1 ] [ k ] +
23 l o c a l a r r a y [ i ] [ j ] [ k − 1 ] +
24 l o c a l a r r a y [ i ] [ j ] [ k ] +
25 l o c a l a r r a y [ i ] [ j ] [ k + 1 ] +
26 l o c a l a r r a y [ i ] [ j + 1 ] [ k ] +
27 l o c a l a r r a y [ i + 1 ] [ j ] [ k ] ) / 7 . 0 ;
28 f o r ( i n t i = 1 ; i <= 10 ; i++)
29 f o r ( i n t j = 1 ; j <= 10 ; j++)
30 f o r ( i n t k = 1 ; k <= 10 ; k++)
31 a c c e s s o r o u t [ i ] [ j ] [ k ] = work [ i ] [ j ] [ k ] ;
32 } ) ;
33 }
Listing 5: Base Kernel
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1 f o r ( i n t in = 0 ; in < s o r t e d i nd e x [ num ref ine + 1 ] ; in++) {
2 bp = &blocks [ s o r t e d l i s t [ in ] . n ] ;
3 s y c l : : range<1> num array{ s t a t i c c a s t <s i z e t >(var max ∗ ( x b l o c k s i z e + 2) ∗
4 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2) ) } ;
5 // c r e a t e a b u f f e r that goes to the fpga
6 double ∗ inputArray = new double [ var max ∗ ( x b l o c k s i z e + 2) ∗
7 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2 ) ] ;
8 // c r e a t e a b u f f e r that comes from the fpga
9 double ∗ outputArray = new double [ var max ∗ ( x b l o c k s i z e + 2) ∗

10 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2 ) ] ;
11 // f l a t t e n the 4d array to a 1d array f o r the b u f f e r
12 f o r ( var = 0 ; var < var max ; var++)
13 f o r ( i n t i = 0 ; i <= x b l o c k s i z e + 1 ; i++)
14 f o r ( i n t j = 0 ; j <= y b l o c k s i z e + 1 ; j++)
15 f o r ( i n t k = 0 ; k <= z b l o c k s i z e + 1 ; k++)
16 inputArray [ ( var ∗ ( x b l o c k s i z e + 2) ∗ ( y b l o c k s i z e + 2) ∗
17 ( z b l o c k s i z e + 2) ) + ( k + ( z b l o c k s i z e + 2) ∗
18 ( j + ( y b l o c k s i z e + 2) ∗ i ) ) ] = bp−>array [ var ] [ i ] [ j ] [ k ] ;
19 s y c l : : bu f f e r<double , 1> i n p u t b u f f e r ( inputArray , num array ) ;
20 {
21 s y c l : : bu f f e r<double , 1> ou tpu t bu f f e r ( outputArray , num array ) ;
22 f p g a k e r n e l ( i n p u t b u f f e r , ou t pu t bu f f e r ) ;
23 }
24 // wr i t e the data back to the block array
25 f o r ( var = 0 ; var < var max ; var++)
26 f o r ( i n t i = 1 ; i <= x b l o c k s i z e ; i++)
27 f o r ( i n t j = 1 ; j <= y b l o c k s i z e ; j++)
28 f o r ( i n t k = 1 ; k <= z b l o c k s i z e ; k++)
29 bp−>array [ var ] [ i ] [ j ] [ k ] = outputArray [ ( var ∗ ( x b l o c k s i z e + 2) ∗
30 ( y b l o c k s i z e + 2) ∗ ( z b l o c k s i z e + 2) ) +
31 ( k + ( z b l o c k s i z e + 2) ∗ ( j + ( y b l o c k s i z e + 2) ∗ i ) ) ] ;
32 }
Listing 6: Combined Memory Transactions Stencil
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1 void f p g a k e r n e l ( s y c l : : bu f f e r<double , 1>& i n p u t b u f f e r ,
2 s y c l : : bu f f e r<double , 1>& o utp ut bu f f e r ) {
3 // Device queue submit
4 queue event = dev ice queue . submit ( [ & ] ( s y c l : : handler& cgh ) {
5 // Create FPGA s i d e a c c e s s o r s to the b u f f e r s
6 auto a c c e s s o r i n =
7 i n p u t b u f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : r ead wr i t e >(cgh ) ;
8 auto a c c e s s o r o u t =
9 o ut put bu f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : d i s c a r d w r i t e >(cgh ) ;

10 cgh . s i n g l e t a s k<c l a s s S t e n c i l k e r n e l >( [=]() {
11 // c r e a t e a l o c a l copy o f the array data f o r i n c r e a s e d performance
12 double l o c a l a r r a y [ 4 0 ] [ 1 2 ] [ 1 2 ] [ 1 2 ] ;
13 f o r ( i n t var = 0 ; var < 40 ; var++)
14 f o r ( i n t i = 0 ; i <= 11 ; i++)
15 f o r ( i n t j = 0 ; j <= 11 ; j++)
16 f o r ( i n t k = 0 ; k <= 11 ; k++)
17 l o c a l a r r a y [ var ] [ i ] [ j ] [ k ] =
18 a c c e s s o r i n [ ( var ∗ (12) ∗ (12) ∗ ( 1 2 ) ) + ( k + (12) ∗
19 ( j + (12) ∗ i ) ) ] ;
20 f o r ( i n t var = 0 ; var < 40 ; var++)
21 f o r ( i n t i = 1 ; i <= 10 ; i++)
22 f o r ( i n t j = 1 ; j <= 10 ; j++)
23 f o r ( i n t k = 1 ; k <= 10 ; k++)
24 a c c e s s o r o u t [ ( var ∗ (12) ∗ (12) ∗ ( 1 2 ) ) + ( k + (12) ∗
25 ( j + (12) ∗ i ) ) ] = (
26 l o c a l a r r a y [ var ] [ i − 1 ] [ j ] [ k ] +
27 l o c a l a r r a y [ var ] [ i ] [ j − 1 ] [ k ] +
28 l o c a l a r r a y [ var ] [ i ] [ j ] [ k − 1 ] +
29 l o c a l a r r a y [ var ] [ i ] [ j ] [ k ] +
30 l o c a l a r r a y [ var ] [ i ] [ j ] [ k + 1 ] +
31 l o c a l a r r a y [ var ] [ i ] [ j + 1 ] [ k ] +
32 l o c a l a r r a y [ var ] [ i + 1 ] [ j ] [ k ] ) / 7 . 0 ;
33 } ) ;
34 } ) ;
35 }
Listing 7: Combined Memory Transactions Kernel
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1 void f p g a k e r n e l ( s y c l : : bu f f e r<double , 1>& i n p u t b u f f e r ,
2 s y c l : : bu f f e r<double , 1>& o utp ut bu f f e r ) {
3 // Device queue submit
4 queue event = dev ice queue . submit ( [ & ] ( s y c l : : handler& cgh ) {
5 // Create FPGA s i d e a c c e s s o r s to the b u f f e r s
6 auto a c c e s s o r i n =
7 i n p u t b u f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : r ead wr i t e >(cgh ) ;
8 auto a c c e s s o r o u t =
9 o ut put bu f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : d i s c a r d w r i t e >(cgh ) ;

10 cgh . s i n g l e t a s k<c l a s s S t e n c i l k e r n e l >( [=]() {
11 // c r e a t e a l o c a l copy o f the array data f o r i n c r e a s e d performance
12 double l o c a l a r r a y [ 1 2 ] [ 1 2 ] [ 1 2 ] ;
13 f o r ( i n t var = 0 ; var < 40 ; var++)
14 f o r ( i n t i = 0 ; i <= 11 ; i++)
15 f o r ( i n t j = 0 ; j <= 11 ; j++)
16 f o r ( i n t k = 0 ; k <= 11 ; k++)
17 l o c a l a r r a y [ i ] [ j ] [ k ] =
18 a c c e s s o r i n [ ( var ∗ (12) ∗ (12) ∗ ( 1 2 ) ) + ( k + (12) ∗
19 ( j + (12) ∗ i ) ) ] ;
20 f o r ( i n t i = 1 ; i <= 10 ; i++)
21 f o r ( i n t j = 1 ; j <= 10 ; j++)
22 f o r ( i n t k = 1 ; k <= 10 ; k++)
23 a c c e s s o r o u t [ ( var ∗ (12) ∗ (12) ∗ ( 1 2 ) ) + ( k + (12) ∗
24 ( j + (12) ∗ i ) ) ] = (
25 l o c a l a r r a y [ i − 1 ] [ j ] [ k ] +
26 l o c a l a r r a y [ i ] [ j − 1 ] [ k ] +
27 l o c a l a r r a y [ i ] [ j ] [ k − 1 ] +
28 l o c a l a r r a y [ i ] [ j ] [ k ] +
29 l o c a l a r r a y [ i ] [ j ] [ k + 1 ] +
30 l o c a l a r r a y [ i ] [ j + 1 ] [ k ] +
31 l o c a l a r r a y [ i + 1 ] [ j ] [ k ] ) / 7 . 0 ;
32 } ) ;
33 } ) ;
34 }
Listing 8: Reduced Local Memory Kernel
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1 void f p g a k e r n e l ( s y c l : : bu f f e r<double , 1>& i n p u t b u f f e r ) {
2 // Device queue submit
3 queue event [ kerne lCounter % 2 ] = dev ice queue . submit ( [ & ] ( s y c l : : handler& cgh )
4 {
5 // Create a c c e s s o r s
6 auto a c c e s s o r i n =
7 i n p u t b u f f e r . g e t a c c e s s<s y c l : : a c c e s s : : mode : : r ead wr i t e >(cgh ) ;
8 cgh . s i n g l e t a s k<c l a s s S t e n c i l k e r n e l >( [=]() {
9 double l o c a l a r r a y [ 1 2 ] [ 1 2 ] [ 1 2 ] ;

10 #pragma u n r o l l X // r e p l a c e X with the number o f u n r o l l s 0 , 2 , 4 , or 8
11 f o r ( i n t var = 0 ; var < 40 ; var++) {
12 f o r ( i n t i = 0 ; i <= 11 ; i++)
13 f o r ( i n t j = 0 ; j <= 11 ; j++)
14 f o r ( i n t k = 0 ; k <= 11 ; k++)
15 l o c a l a r r a y [ i ] [ j ] [ k ] = a c c e s s o r i n [ ( var ∗ (12) ∗ (12) ∗
16 ( 1 2 ) ) + ( k + (12) ∗ ( j + (12) ∗ i ) ) ] ;
17 f o r ( i n t i = 1 ; i <= 10 ; i++)
18 f o r ( i n t j = 1 ; j <= 10 ; j++)
19 f o r ( i n t k = 1 ; k <= 10 ; k++)
20 a c c e s s o r i n [ ( var ∗ (12) ∗ (12) ∗ ( 1 2 ) ) + ( k + (12) ∗
21 ( j + (12) ∗ i ) ) ] = (
22 l o c a l a r r a y [ i − 1 ] [ j ] [ k ] +
23 l o c a l a r r a y [ i ] [ j − 1 ] [ k ] +
24 l o c a l a r r a y [ i ] [ j ] [ k − 1 ] +
25 l o c a l a r r a y [ i ] [ j ] [ k ] +
26 l o c a l a r r a y [ i ] [ j ] [ k + 1 ] +
27 l o c a l a r r a y [ i ] [ j + 1 ] [ k ] +
28 l o c a l a r r a y [ i + 1 ] [ j ] [ k ] ) / 7 . 0 ;
29 }
30 } ) ;
31 } ) ;
32 }
Listing 9: Buffered Kernel
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III. Applications

Articles in this section discuss the application of computational techniques to simulate dif-
ferent physical systems.

1. Cleaves and Wilson used a global sensitivity analysis approach for the paramter
selection and dimensionality reduction in atomistic molecular dynamics (MD)
simulations, with focus on the energetic interactions between silicon and oxygen
in the context of silica-based glasses. They reveal several non-influential parameters
of the studied energetic properties.

2. Ganesh, St. John, Lofstead, and Mitcheell construct 3D simulations of micro-
structure formation during metal additive manufacturing for the metal
selective laser sintering (SLS) process. In their method, they stitch together many
smaller SPPARKS simulations on overlapping sub-volumes rather than simulating
on the entire domain at once.

3. Hanson, Bochev, and Paskaleva utilized Dynamic Mode Decomposition (DMD), a
system identification technique for learning reduced-order discrete-time dynamical
systems from time series data based on singular value decomposition. Applied to
radiation-induced photocurrent in semiconductor devices, they simulated
the excess carrier density induced by radiation pulses by solving numerically the
Ambipolar Diffusion Equation, then used the simulated internal state as training
data for the DMD algorithm.

4. Hothem and Parekh study approximation schemes for k-local qubit systems and
how they could be applied to fermionic many-body systems with local inter-
actions to find the lowest energy or ground states.

5. Krause and Steyer explore Exponential Time Differencing Runge Kutta (ETD-RK)
methods as an efficient time integrator for the nonhydrostatic atmosphere
model HOMME-NH. They show how to use ETD-RK methods to maximize
efficiency by keeping stage value computations and storage to a minimum, and
compare the accuracy and stability regions of these methods.

6. Machalek, Bran-Anleu, and Hecht develop a non-equilibrium model of a liquid
hydrogen storage tank. Their simulations included different boiling regimes with
normal boiloff for model validation, and have highlighted key differences between
an equilibrium and a non-equilibrium models.

A.A. Rushdi
M.L. Parks

November 1, 2020
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GLOBAL SENSITIVITY DRIVEN INPUT DIMENSIONALITY
REDUCTION FOR REAXFF PARAMETERIZATIONS OF SILICA-BASED

GLASSES

HELEN CLEAVES∗ AND MARK WILSON†

Abstract. Accuracy of classical atomistic molecular dynamics (MD) simulations originates from the
quality of the interatomic potential, defining pair-wise atomic energetic interactions. The reactive force
field, ReaxFF is an example of a complex potential having multiple contributions to the system energy and
therefore multiple parameters to define the potential. In an effort to understand the relationships between
these parameters and simulated properties, we deploy a global sensitivity analysis approach to screen these
parameters for importance and potential dimensionality reduction. We focus our analysis on the energetic
interactions between silicon and oxygen in the context of silica-based glasses. A set of numerical results is
presented which reveal several non-influential parameters of the studied energetic properties for this system.

1. Introduction. Molecular dynamics (MD) simulations with reactive potentials pro-
vide the capability to gain chemically specific, atomic-scale insight into a broad range of
material science applications with examples including dislocation dynamics, chemical kinetic
processes, and crack propagation. Each of these examples represent a complex dynamic pro-
cess where MD can expose the atomic-scale origins of the given phenomena, which can prove
useful for designing preventative or predictive measures.

ReaxFF is a reactive interatomic potential [8, 1, 10] which can be utilized by the MD
simulation package LAMMPS [6]. Given an accurate parameterization, LAMMPS paired
with ReaxFF is capable of computing highly specific chemical data. Every unique material
system and physics of interest requires a corresponding unique parameterization. There are
72 parameters involved in a reactive potential parameterization for a single element, and
for compounds involving multiple distinct elements the parameter dimension is significantly
larger. Due in part to the shear amount parameters that need to be estimated, creating
novel parameterizations is a challenging and time consuming task. To make ReaxFF more
extensible for projects that require fast analysis of novel (multi-component) material sys-
tems, the goal of the present work is to use global sensitivity analysis (GSA) to identify
non-influential parameters to the ReaxFF parameterization.

We focus our analysis on a well-utilized, existing parameterization for the elements
silicon (Si) and oxygen (O) in the context of silica-based glasses [5]. We study a variety
of quantities of interest (QoIs) corresponding to the energetic interactions between Si and
O, and screen for non-influential parameters by computing derivative-based global sensi-
tivity measures (DGSMs) [4, 2] for the associated input parameters. Studied QoIs include
isolated (single) atom energy, radial bond energy, angular bending energy, and torsional
rotation energy.

The article is organized as follows: In Section 2 we explain the uncertain parameter
space and give a brief overview of the studied objectives. A concise overview of DGSMs
definitions and properties for both scalar and function-valued QoI is included in Section 3.
We provide a set of numerical results and explanations in Section 4. Lastly, in Section 5 we
include possibilities for future work and closing remarks.

2. ReaxFF parameters and QoIs. Here we provide a brief overview of how ReaxFF
works, the parameters associated with a given compound, and expand on the QoIs to be
studied.

∗North Carolina State University, hlcleave@ncsu.edu
†Sandia National Laboratories, marwils@sandia.gov
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Parameters of ReaxFF ReaxFF is a bond order-based interatomic potential, which
means it treats bond order as a continuous function of interatomic distance. Due in part
to these factors, ReaxFF is able to compute atomistic-scale chemical behavior. ReaxFF
is known for its near-first principles accuracy. For brevity we do not include the precise
analytical equations in the present work. A detailed breakdown of the analytical form of
the involved potentials can be accessed in reference [9].

There are six different types of parameters in the ReaxFF potentials: atom, bond, off-
diagonal, angle, torsion, and hydrogen bond. There are a handful of parameters which are
fixed for certain atoms or compounds. For example, there is a parameter corresponding to
atomic mass which is fixed for every atom. In Table 4.1 we include the parameter types
along with the total number of parameters associated with each QoI.

The input parameters are assumed to be independent, and uniformly distributed such
that θj ∼ U(aj , bj) where aj and bj are the lower and upper bounds corresponding to
parameter θj . The upper and lower bound for each parameter were determined by numerical
experimentation. The interval for each θj was established around the published values
defined in the work of Pitman et al [5]. Then, the QoI functions were evaluated with
parameters sampled from these intervals. Upper and lower bounds were modified until
regions were found for which LAMMPS and ReaxFF did not error. The intention was to
test the extent at which the parameter space is limited by the calculation done by LAMMPS
and ReaxFF, rather then by the physical meaning of the parameters.

QoI overview We consider four QoIs: isolated (single) atom energy, radial bond energy,
angular bending energy, and the torsional rotation energy. We denote these QoI as Si(θ),
Bij(x,θ), Aijk(x,θ), and Tijkl(x,θ) respectively. The subscripts correspond to the atom
numbers. Note, the single atom energy is a function of the input parameters θ only, while
the remaining three QoIs are also functions of an independent state variable x.

We briefly describe the LAMMPS simulation for each QoI studied. For Si(θ) a single
atom is placed in a “box”, and LAMMPS calculates the associated potential energy. For
Bij(x,θ), two atoms are placed 1 Angstrom apart and then separated to a distance of
14.9 Angstrom. LAMMPS calculates the potential energy of the bond at intervals of 0.1
Angstrom. For this QoI the state space x represents distance. The simulation for Aijk(x,θ)
involves three atoms. The atoms are initialized with an angle of 10 degrees between them.
Then, a radial atom is moved until the angle between all three atoms is equal to 180 degrees.
LAMMPS measures the angular energy at ten degree intervals. In this case, the state space
corresponds to degrees. Lastly, the simulation for Tijkl(x,θ) involves rotation the bond
between atoms j and k a full 360 degrees. LAMMPS measures torsion rotational energy at
intervals of one degree. A visual representations for each QoI are displayed in Figure 2.1.

In the present approach we assume a QoI depends on all possible relevant parameters.
For example, we assume Bij depends on all possible atom and bond and off-diagonal pa-
rameters. Therefore, to simulate the bond potential energy of Si-O we would need two sets
of atom parameters (one for Si and one for O), as well as a set of bond parameters, and a
set of off-diagonal parameters. This QoI may therefore require as many as 86 parameters.
Assuming very little about which input parameters are relevant to a QoI allows us to develop
a framework that can be applied to a wide range of QoIs. For the QoIs studied we will see
that not all included parameters have an effect on their respective QoIs, see: Section 4.
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Fig. 2.1: Visual representations of the four studied QoIs. Clockwise from upper left: Si,
Bij , Aijk, and Tijkl.

3. Methods. In this section, we supply a concise overview of both scalar and function-
valued DGSMs. Let Ω be a Np-dimensional probability space with probability measure µ.
Let f(s,θ) be a measurable function from X ×Ω → R, where θ is the Np-dimensional vector
of uncertain parameters, and s ∈ X ⊆ R is an independent state variable, representing either
space or time. We assume ∂f

∂θi
is square integrable in the product space for all i = 1, . . . ,Np.

Observe, for a fixed ŝ ∈ X , f(ŝ, ·) is a scalar value. We have the following definition of
the scalar derivative-based global sensitivity measure (DGSM) for f with respect to the
uncertain parameter θj :

νj(f(ŝ, ·)) :=

∫

Ω

(
∂f(ŝ,θ)

∂θj

)2

µ(dθ). (3.1)

The above definition was developed in references [4, 3] for scalar QoI and can be interpreted
as follows: a parameter θj with a relatively “small” νj suggests that f is not very sensitive
to changes in that parameter. DGSMs are commonly used to screen for unimportant pa-
rameters by picking some “importance” threshold, and assuming all parameter with DGSM
values below this threshold to be non-influential. Identifying non-influential parameters has
a variety of applications, including input dimension reduction and increased understanding
of QoI behavior. The isolated single atom energy Si(θ) is an example of a scalar QoI.

Direct computation of the DGSMs requires estimating an integral over the uncertain
parameter space. This is often computed via Monte Carlo or Latin hypercube sampling,
a procedure that becomes computationally expensive as the input parameter dimension
increases. However, it has been observed in practice that the number of samples required
for a sufficient accurate estimate of νj is not too large [4]. We must also approximate partial
derivates with respect to input parameters which can be accomplished in a variety of ways.
The approach taken in the present work is finite differences.

Excluding the isolated single atom energy, all studied QoIs are function-valued. This
means they are functions of both the parameters space as well an independent state variable.
A generalization of the scalar DGSMs is need for such QoIs. This is accomplished by
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computing the scalar DGSM value at s ∈ X and then averaging over the state space. This
approach is purposed in reference [2] resulting in the following definition for function-valued
DGSMs:

Nj(f) :=

∫

X
νj(f(s, ·) ds (3.2)

The interpretation of function-valued DGSMs is the same as scalar DGSMs, i.e. a smaller
value implies a less important parameter. We compute νj the same as in the scalar case,
and the integral over the state space is accomplished using quadrature.

Lastly, we mention that the motivation for using DGSMs is based primarily on a desire to
build in future flexibility for restrictions on the input parameters. Recall, we have assumed
the input parameters are all independent. This assumption may not hold for every future
QoI studied. Unlike some other sensitivity analysis metrics, such as Sobol’ indices [7], which
rely on input parameter independence, DGSMs do not require any such assumption to be
applicable.

4. Numerical Results. We let the number 1 represent an oxygen atom, and let 2
represent a silicon atom. We compute the DGSM values for 12 QoIs. Parameters with
nonzero DGSM values are considered influential. For all DGSM computations we use finite
differences to approximate the partial derivatives, and for the 10 function-valued QoIs we
use quadrature to compute the integral over the state space. A summary of the studied
QoIs, total number of parameters, influential parameter numbers, and total amount of QoI
samples used is provided in Table 4.1.

Isolated (Single) Atom Energy Recall, Sj(θ), j = 1, 2 is a scalar QoI, corresponding
to the isolated (single) energy of an atom. We fix six of the atom parameters and assume
Sj(θ) is a function of the remaining Np = 26 atom parameters. Using a sample size of
Ns = 1,000 we compute the DGSMs for both atom 1 and atom 2, respectively. Observe that
from the original 26 parameters, only two parameters have nonzero DGSM values. This
suggests that the single atom for both O and Si depends on the same two parameters, only.

Radial Bond Energy Next, we compute the function-valued DGSMs for the radial
bond energy Bij(x,θ). For i = j = 1, 2 the radial bond energy is assumed to be a function
of Np = 42 atom and bond parameters. There are no off-diagonal parameters when i = j.
We compute the function-valued DGSM values for B11 and B22 with Ns = 1,000. The QoI
B11 has 12 parameters with zero DGSM values and B22 has 17 parameters with zero DGSM
values. Therefore, the input parameter dimension of B11 and B22 can be reduced to 30 and
25, respectively. Note, there were several parameters that were influential for B11 that were
non-influential for B22. This could be due in part to the differences in the atomic structure
of the two different atoms, and the associated bonding behaviors.

We also compute the function-valued DGSMs for B12 with Ns = 1,000. This QoI is
assumed to be a function of two sets of atom parameters, one set of bond parameters, and
one set of off-diagonal parameters. After excluding fixed parameters the input parameter
dimension for B12 is Np = 73. There are 33 parameters with zero DGSM values reducing
the input dimension from 73 to 40.

Angular Bending Energy Recall, Aijk(x,θ) represents the angular bending energy.
For the case when i = j = k = 1 A111 is a function of Np = 56 atom, bond, angle, and
torsion parameters. For i = j = k = 2 A222 is a function of Np = 49 atom, bond, and angle
parameters. We compute the DGSM values for A111 with Ns = 1,000 and determine there
are 41 influential parameters. Similarly, we use Ns = 991 to compute the DGSM values for
A222. This QoI had 37 influential parameters. The 4 parameter difference between A111 and
A222 could once again be a consequence of the atomic structure of the two different atoms,
and the associated bonding behaviors.
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Table 4.1: List of studies performed in this work. Each quantity of interest (QoI), iso-
lated (single) atom energy (Si(θ)) radial bond energy (Bij(x, θ)), angular bending energy
(Aijk(x, θ)), torsional rotational energy (Tijkl(x, θ)) is listed with their respective varied
parameters, total number of samples (Ns), and number of samples with LAMMPS errors
(Ne). Subscripts denote atom types, where 1 represents oxygen and 2 silicon.

QoI parameters Np influential
parameters

Ns Ne

S1(θ) atom: 1 26 2 1000 0
S2(θ) atom: 2 26 2 1000 0
B11(x, θ) atom: 1 42 30 1000 0

bond: 1 1, 2 2
B22(x, θ) atom: 2 42 25 1000 0

bond: 2 2
B12(x, θ) atom: 1,2 73 40 1000 0

bond: 1 2,
off-diagonal: 1 2

A111(x, θ) atom: 1 56 41 1000 0
bond: 1 1
angle: 1 1 1
torsion: 1 1 1 1

A222(x, θ) atom: 2 49 37 1000 9
bond: 2 2
angle: 2 2 2

A122(x, θ) atom: 1,2 103 75 1000 26
bond: 1 1, 1 2
off-diagonal: 1 2
angle: 1 2 2, 2 1 2

A212(x, θ) atom: 1, 2 103 76 1000 20
bond : 1 2, 2 2
off-diagonal: 1 2
angle: 1 2 2, 2 1 2

A121(x, θ) atom: 1, 2 110 79 1000 12
bond : 1 1, 1 2
off-diagonal: 1 2
angle: 1 2 1, 1 1 2
torsion: 1 1 1 1

A112(x, θ) atom: 1, 2 110 78 1000 16
bond : 1 1, 1 2
off-diagonal: 1 2
angle: 1 2 1, 1 1 2
torsion: 1 1 1 1

T1111(x, θ) atom; 1 56 46 1000 612
bond : 1 1
angle: 1 1 1
torsion: 1 1 1 1

The QoIs A122 and A212 are functions of Np = 103 atom, bond, off-diagonal, and angle,
parameters. We use Ns = 974 and Ns = 980 samples to compute the DGSM values for
A122 and A212 respectively. There are 75 influential parameters for A122 and 76 influential
parameters for A212. In this instance, the QoIs shared all the same non-influential parame-
ters except one parameter corresponding to bond over-coordination energy. This difference
could be a consequence of the structure of the compound.

For the QoIs A121 and A112 we have Np = 110 parameters. We compute the DGSM
values with Ns = 988 and Ns = 984 samples for A121 and A112, respectively. The results are
used to determine there are 79 influential parameters for A121 and 78 influential parameters
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for A112. Similar to the previous mixed atom angular bending energy, this difference may
be a consequence of the atom structure.

Torsional Rotational Energy Lastly, we consider the torsional rotational energy for
T1111 which is a function of 56 input parameters. We compute the DGSM values using
Ns = 384 samples. Note this is significantly smaller sample size. There were 10 parameters
with zero DGSM values. Therefore input parameter dimension can be reduced from 56 to
46.

5. Conclusions. A global sensitivity approach was utilized to identify non-influential
parameters of the reactive potentials used by ReaxFF. We focused on energetic interactions
between Si and O, and calculated DGSM values for single atom energy, radial bond energy,
angle bending energy, and torsional rotation energy, for a variety of atom combinations. The
computed sensitivity measures indicated that several of input parameters are insignificant
in this material system. This information could be used to inform the user of parameters
that are non-influential during the optimization process for Si-based glass ReaxFF input
parameters.

Future work is needed. With respect to the parameter space, we made several simpli-
fying assumptions, including parameter independence. Also, the parameter intervals were
determined experimentally. Future efforts to better map out the parameter space and rela-
tionships between parameters is needed. Future work could also include comparing results
for elements in similar periodic categories and compounds with similar structures in order
to look for trends.

We observed a zero DGSM value for many parameters. In future studies, an importance
threshold could be enforced on the DGSM values to reduce the input dimension to a size for
which more informative, but computationally expensive GSA tools can be applied. Once
the input dimension has been reduced, the accuracy of the reduced simulations could be
evaluated by comparing to simulations computed in the full parameters space. Additionally,
input parameter dimension reduction could in turn inform which parameters need precise
estimation for different QoIs to achieve an accurate parameterization.
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STITCH-CAD: CREATING DIGITAL TWIN SPPARKS SIMULATION FOR
ADDITIVE MANUFACTURING

MANISHA GANESH∗, GAVIN ST. JOHN† , JAY LOFSTEAD‡ , AND JOHN MITCHELL§

Abstract. The objective of this project is to construct 3D simulations of micro-structure formation
during metal additive manufacturing for the metal selective laser sintering (SLS) process. SPPARKS is an
existing kinetic Monte Carlo simulation framework for simulating micro-structure evolution on a 3D domain.
Using traditional methods for computing and writing to files is prohibitive because of length scale disparities
between engineered component and micro-structures. Stitch-IO helps overcome this by allowing the user
to stitch together many smaller SPPARKS simulations on overlapping sub-volumes rather than simulating
on the entire domain at once; simulation results are appended and stitched together in one database file.
Slic3r is open source software typically used to generate the G-code for 3D printers given an input CAD
file representing component geometry. Stitch-cad combines these three systems enabling a user to simulate
and visualize micro-structure evolution of a part, layer by layer, as it is printed; the completed simulation
data is stored in one file which may be visualized and analyzed on any arbitrary sub-volume using standard
tools or through a simple Python or C API. Initial limited comparative testing has shown results consistent
with physical builds.

1. Introduction. Offering a digital twin enables computer modeling of systems with-
out have to physically build and test prototypes thereby potentially speeding development
and saving time and money. The combination of SPPARKS [3] and Stitch-IO [1] has pre-
viously been demonstrated as enabling large, length scale simulations of micro-structures
arising from metal Additive Manufacturing (AM). However, the models used were simple
and directly programmed in SPPARKS. This new Stitch-CAD effort enhances the existing
model by using geometric information contained in an input CAD model to steer SPPARKS
via G-code in the same way an AM machine operates to manufacture a metal part. In this
way, Stitch-CAD creates a digital twin of the manufactured part using the same geometric
process parameters used by the AM machine. Stitch-CAD is focused on simulation of metal
selective laser sintering (SLS) 3D printing.

Additive manufacturing (AM) refers to the process in which material is incrementally
deposited and merged (rather than subtracted), typically layer by layer, in order to construct
a three-dimensional object. The geometry of these objects are defined by CAD models, often
represented in the STL file format. In order to print the object, the STL file is fed into
a slicing tool that splits the 3D object into layers and generates a set of layerwise print
instructions. These instructions are written as G-code which is the industry standard for
driving AM machines.

This paper shows initial outcomes from using Stitch-CAD to explore model creation.
These tests demonstrate the simulation can be used to tune physical build parameters
reducing the number of faulty builds due to poor parameter choices.

The paper is organized as follows. First are short sections summarizing SPPARKS
and Stitch-IO in Sections 2 and 3, respectively. Section 4 is next which details the new
Stitch-CAD mechanisms and procedures. The new algorithm is presented and described in
Section 5. Our main results are presented in Section 6. Conclusions follow in Section 7.

2. SPPARKS Overview. Welding and additive manufacturing (AM) models [6] have
been successfully incorporated into the spparks [2, 4] kinetic Monte Carlo framework. For
the purpose of engineering design and analysis, material microstructures are predicted by
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simulating the process of melt, fusion and solidification. In these models, a heat source,
typically a laser, creates a very localized melt pool and surrounding region called the heat
affected zone (HAZ); outside of the HAZ, the temperature is below the threshold for grain
growth and evolution. In the case of welding, the laser heat source moves along a joint
melting and fusing material from both sides of the joint which subsequently solidifies. At
any particular instance during the process, models need only consider the localized HAZ
around the laser location. Material in the remaining areas outside of the HAZ remains
unchanged.

3. Stitch-IO Overview. Stitch-IO is a new IO library that enables the progressive
simulation model by breaking some fundamental assumptions other IO libraries require.
First, the simulation domain is never formally defined. Instead, the formal simulation do-
main is inferred based on the spatial locations provided as part of each output operation.
Second, the entire simulation domain for a given timestep is never stored during any partic-
ular simulation. Instead, only a portion of domain is in memory during a simulation. When
the state for a given region of the domain is requested, the correct state is constructed based
on the provided time epoch. Finally, the library is fully Python enabled and uses a standard
embedded database format internally enabling both ad hoc querying using Python prim-
itives for quick visualizations and data analysis and direct data storage access, if needed,
using standard APIs. This latter openness enables users to extend Stitch-IO functional-
ity without having to change the library. Instead, arbitrary operations on stored data can
be performed. The database format also offers concurrency control, resilience, and other
database-oriented features without extra programming effort and complexity.

The net result of combining SPPARKS with Stitch-IO is that a large part can be
simulated using a small fraction (1/64th or smaller) of compute resources required to hold
all of the data while running in the same wall clock time as if the whole simulation domain
were deployed on a large cluster. Most importantly, computationally impossible domains
that exceed the memory requirements of even the largest machines can now be run on a
laptop with lossless results.

4. Stitch-CAD Overview. Stitch-CAD combines SPPARKS and Stitch-IO with Slic3r [5]
to create digital twins. Slic3r is open source and easily accessible from the shell. Like a
physical 3D printer, Stitch-CAD takes an STL file, defining the component geometry of a
part, as input. Slic3r then slices the part into layers along the build axis (normally the
z-axis), and defines infill lines for each layer in the form of G-code. The infill line direction
is perpendicular to the infill lines of bordering layers. Hatch spacing and line angle can be
modified in the Slic3r input file. (See Figure 4.1).

Since the focus here is on AM for metals (SLS printing), whereas Slic3r is designed to
generate G-code for fused deposition modeling (FDM) or fused filament fabrication (FFF)
(FDM/FFF) type printing, some processing of G-code is required. FDM/FFF printers
require a continuous path, whereas metal SLS printers have the capability to turn the laser
on and off. Before simulation, Stitch-cad removes these extraneous paths from the G-code,
and extracts a list of the essential laser path movements for each layer. This is illustrated
in Figure 4.2. Stitch-CAD then further breaks down the G-code paths into computational
volumes that can be processed reasonably with a minimum of idle compute resources.

Stitch-Cad generates a separate computational volume for each path line in the layer,
representing the region affected by the laser path; Micro-structures only evolve within the
HAZ (heat affected zone). In the case that the computational volume around a particular
laser path line requires more than the maximum number of sites available (user specified),
the path line is recursively split up into smaller segments.

The HAZ cap, HAZ tail and HAZ width measurements are used to calculate the com-
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Fig. 4.1: Depiction of the Slic3r generated infill path lines (blue lines) for alternating layers
of a plus cube with a fill angle of 35◦. Infill pathlines are unpruned. Red outline represents
perimeter.

Fig. 4.2: Example of the Slic3r generated G-code path and then the pruned version appro-
priate for SLS printing.

putational volume. The laser path is shortened so that HAZ boundaries do not extend past
endpoints of the original path line.

(a) Computational Volume (b) Sub-Volume Collection

Fig. 4.3: 4.3(a) demonstrates how computational volumes are calculated using HAZ Width,
HAZ Tail, and HAZ Cap dimensions along with start point, endpoint and laser path vector.
Computational volume is denoted by gray box. 4.3(b) depicts how computational volume
moves with laser path.

Each laser path is contained within a computational volume; each computational volume
is sized according the HAZ parameters. SPPARKS simulates micro-structure formation and
evolution on the laser path within each computational volume, and results are incrementally
appended to a Stitch file, similar to the way material would be added to an AM part. The
computational volume and sub-volume collection are illustrated in Figure 4.3.
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4.1. Input Parameters. The SPPARKS potts/additive app style was used to simulate
micro-structures. A length scale parameter c, with units of µ (microns) per site, is used to
relate physical length scale dimensions of microns to SPPARKS lattice site dimensions; for
simulations results presented in this report, c = 10 was used. A Slic3r Fill Density of 20%
was used so that there was around 50% overlap between adjacent computational volumes.

Table 4.1: Slic3r Specifications

Layers and Perimeters
Layer Height 0.03 mm
First Layer Height 0.03mm

Infill
Fill Density 20 %
Fill Pattern Rectilinear
Fill Angle 0◦

Perimeters 0

Table 4.2: SPPARKS Laser Specifications

SPPARKS Laser Specifications
Microns Sites

spot width 100 10
melt tail length 100 10
melt depth 40 4
cap height 50 5
HAZ 130 13
tail HAZ 130 13
depth HAZ 60 6
cap HAZ 60 6
layer thickness 30 3

5. Algorithm. For each layer, Stitch-Cad extracts pruned laser paths. For each laser
path, Stitch-Cad computes the computational volume, initializes the region, then performs
the SPPARKS simulation for that defined laser path and appends simulation results to
Stitch database. An outline of the Stitch-Cad algorithm is listed below.

1. Split G-code into layers
2. Prune each layer
3. For each laser path

(a) Computational volume is calculated
(b) Computational volume is initialized
(c) SPPARKS simulation on laser path using potts/additive.

6. Main Results. Demonstration simulations were conducted on a staircase shaped
domain; staircase dimensions are defined in Figure 6.1.

Stitch-Cad generated paths for the first two layers in staircase build simulation are
shown in Figure 6.2; as shown, scan patterns alternate in direction, e.g. direction x on layer
1 followed by direction y on layer 2 and so on for entire build.
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Fig. 6.1: Detailed drawing of staircase dimensions, in mm

Fig. 6.2: Slic3r generated infill lines (left) and corresponding computational volumes and
pruned path lines (right) generated by Stitch-Cad.
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Simulated micro-structures on the staircase are shown in Figure 6.3; top image depicts
randomized initialization of micro-structure on SPPARKS lattice and graphical annotation
of y and x cuts; lower two images depict effect of a variable laser speed. For the process
parameters used, columnar grains appear along build direction arising from epitaxial grain
growth. z−cut and y−cut images of simulated build are shown in Figures 6.4 and 6.5.

(a) initialization (b) speed = 9 sites/mcs (c) speed = 12 sites/mcs

Fig. 6.3: x-cut (x = 50). Lower two images depict predicted micro-structures for two
different laser speeds. Comb structure at right edges are numerical and graphical artifacts
due to rendering and handling of geometry.

(a) initialization (b) speed = 9 sites/mcs (c) speed = 12 sites/mcs

Fig. 6.4: z-cut (z = 25); two different laser speed. Right edge depicts numerical and
graphical rendering artifacts related to handling of paths and geometry.
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Fig. 6.5: y-cut (y = 50). Depicts build, for speed 12sites/mcs, halfway through the process
(middle) and at end of process (right). Right edge depicts numerical and graphical rendering
artifacts related to handling of paths and geometry.

Figure 6.6 demonstrates how the Stitch-Cad output compares to a SPPARKS simula-
tion staircase with the same dimensions (see Table 4.2) built without Stitch-Cad. In this
second build, each layer was simulated in its entirety, using a serpentine laser pattern with
a hatch spacing of 50 microns (5 sites) on each layer, and a speed of 14 sites/mcs. These
path lines were very similar to the Slic3r generated infill lines used in our Stitch-Cad build.
Both have largely vertical grain growth but the Stitch-Cad build has narrower crystals.
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Fig. 6.6: x cut stitch-Cad and example SPPARKS.

6.1. Geometry and initialization. SPPARKS simulations are conducted on a se-
quence of unique computational volumes to assemble a complex geometry. Each computa-
tional volume is axis aligned as defined by laser path lines which are not necessarily axis
aligned or conformal to the exact STL defined geometry. The consequence of this is shown
in Figure 6.7. Note geometry implied by upper right and bottom images in Figure 6.7 – this
geometry does not reflect the actual geometry shown in upper left image. Computational
volumes are not necessarily confined to the interior of the STL defined volume; however laser
path lines remain inside the STL defined geometry. As another example, consider overhang
artifacts in lower steps of staircase build simulation shown in Figures 6.5 and 6.8. This
is due to alternating direction of path lines between adjacent layers. Infill lines are layer
dependent.

In some cases, there is a larger distance between the Slic3r generated infill lines and
the perimeter which can cause a larger variation in overall layer dimensions after computa-
tional volumes are combined on the layer. This issue may be resolved by considering how
computational volumes are computed from Slic3r GCODE paths; clipping of domain prior
to rendering may also be an important tool to eliminate these artifacts. Because of these
practical facts, rendering issues are created which are not necessarily simulation problems
but rather rendering artifacts; future work is planned to develop methods for clipping simu-
lated results for the purposes of rendering and further analysis. This could also potentially
be resolved using the perimeter coordinates, which are also specified in the G-code.
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(a) Geometry and Slic3r z-cut
path lines

(b) Stitch-Cad generated sequence of com-
putational volumes on layer; image also in-
cludes bounding box renderings

(c) Rendering of volume initial-
ized for SPPARKS simulation
on layer

Fig. 6.7: Plus-cube. Geometry, computational volumes and initialization.

Fig. 6.8: Before and after of overhangs, on lower steps of staircase.

Another issue to note is that path line coordinates in x−y plane on a layer are normalized
by Stitch-Cad using minimum and maximum coordinate values on the layer. For Stitch-Cad
to properly generated computational volumes, all layers must have the same x − y origin
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otherwise the layer geometry defined by STL would be incorrectly modified by Stitch-Cad.
This condition was already satisfied by the staircase STL file. However, for more complex
geometries, this is something that must be addressed otherwise path lines generated by
Stitch-Cad will not strictly adhere to geometry defined in STL file.

7. Conclusions. Using Stitch-Cad we have demonstrated the ability to simulate micro-
structures on more complex geometries defined by STL files. Slic3r was used to slice the
STL defined geometry into layers and generate raster scan patterns defined by GCODE. Us-
ing Stitch-Cad, GCODE was interpreted into suitable SPPARKS commands for simulating
micro-structure formation and evolution on the STL defined geometry. This work represents
the first demonstration simulating an AM build in SPPARKS using non-trivial geometries
defined by an STL file. This work also identified an important computational issue which
much be addressed to more generally handle STL geometries; the local coordinate system
origin on each layer must be carefully considered to handle general complex geometries;
this will be the subject of future and continuing work. Rendering of micro-structures is an
essential element of this work – another important finding is that micro-structure render-
ings must respect STL defined geometry otherwise usefulness of visualization and process
rendering is diminished. As this project progresses, this issues will be addressed as well
exploring more complex models and the issues they may reveal.
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LEARNING COMPACT PHYSICS-AWARE DELAYED PHOTOCURRENT
MODELS USING DYNAMIC MODE DECOMPOSITION

JOSHUA HANSON∗, PAVEL BOCHEV† , AND BILIANA PASKALEVA‡

Abstract. Radiation-induced photocurrent in semiconductor devices can be simulated using complex
physics-based models, which are accurate, but computationally expensive. This presents a challenge for
implementing device characteristics in high-level circuit simulations where it is computationally infeasible to
evaluate detailed models for multiple individual circuit elements. In this work we demonstrate a procedure
for learning compact delayed photocurrent models that are efficient enough to implement in large-scale
circuit simulations, but remain faithful to the underlying physics. Our approach utilizes Dynamic Mode
Decomposition (DMD), a system identification technique for learning reduced-order discrete-time dynamical
systems from time series data based on singular value decomposition. To obtain physics-aware device models,
we simulate the excess carrier density induced by radiation pulses by solving numerically the Ambipolar
Diffusion Equation, then use the simulated internal state as training data for the DMD algorithm. Our
results show that the significantly reduced-order delayed photocurrent models obtained via this method
accurately approximate the dynamics of the internal excess carrier density—which can be used to calculate
the induced current at the device boundaries—while remaining compact enough to incorporate into larger
circuit simulations.

Key words. Dynamic Mode Decomposition, Ambipolar Diffusion Equation, delayed photocurrent,
machine learning, data-driven compact models.

1. Introduction. Ionizing radiation can affect operation of electronics in multiple ap-
plication contexts including space, terrestrial and manmade nuclear environments. Specif-
ically, fluence of ionizing radiation generates electron-hole pairs within semiconductor de-
vices, resulting in excess currents flowing through the devices. Such excess current is not
present during device operation in a normal environment and its impact on electronic sys-
tems can be catastrophic, ranging from instantaneous interruptions in service, loss of stored
memory, and even burnout of the entire system. For example spacecraft depend on elec-
tronic components that must perform reliably over missions measured in years and decades
and space radiation is a primary source of degradation, reliability issues, and potentially
failure for these electronic components. Physics-based modeling and simulation of radiation
effects on electronic systems in various radiation environments can facilitate understand-
ing of the mechanisms governing the radiation response of the electronic materials, parts,
and systems, and can be used to devise ways to mitigate radiation effects, and create new
materials and devices that are resilient to radiation exposure.

Thus, computational analysis of radiation effects on electronic systems has utility rang-
ing from guiding the initial designs of systems, setting up the design of experiments, and
final qualification. At a device level the excess carrier behavior can be accurately modeled
by the Drift-Diffusion equations (DDE) [17] given by

∇ · (εE) = q(p− n+ C) (1.1)

∂n

∂t
= ∇ · (nµnE +Dn∇n)−R+ g (1.2)

∂p

∂t
= ∇ · (pµpE +Dp∇p)−R+ g (1.3)

where n and p are the concentrations of the electrons and holes, respectively, µn, µp, Dp,
and Dn are the carrier mobilities and diffusivities, C is the doping concentration, E is the
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electric field, q is the electron charge, R is the recombination rate, and g is the carrier
generation density.

Numerical solution of (1.1)–(1.3) using, e.g., a multi-dimensional finite element dis-
cretization of the device, forms the basis of the so-called Technology Computer-Aided Design
(TCAD) simulators. However, (1.1)–(1.3) is a coupled system of nonlinear Partial Differen-
tial Equations (PDEs) whose accurate numerical solution can be very time consuming. As
a result, although TCAD device simulators based on the DDE could in principle be coupled
to circuit simulators, their high computational cost makes the analysis of all but very small
circuits computationally intractable.

At the other end of the spectrum are the so-called compact device models, which are
computationally efficient but rely on empirical approximations and/or simplified analytic
solutions to the semiconductor transport equations. Often such models must be recalibrated
for different operating regimes and inclusion of new physics may force redevelopment of the
model from scratch.

Data-driven techniques present an opportunity to automate the development of compact
models by learning them directly from laboratory measurements and/or suitable synthetic
data. For such models to be practically useful though, they must be able to correctly
predict the device response when the device is integrated into a circuit and exposed to
a wide range of stimuli. The caveat is that in a laboratory setting one can only apply a
limited type of signals and directly measure the device response, leading to “sparse” training
sets. In contrast, traditional Machine Learning (ML) applications, such as natural language
processing and image classification [11, 10, 8] operate in “big data” environments. As a
result, a compact device model learned solely from such “sparse” data may fail to generalize
to all relevant analysis conditions because it will learn salient patterns in the dataset rather
than the causal physics underpinning the device operation.

The latter, i.e., the fact that device behavior is governed by strict physics laws can be
used to counter the lack of big data by incorporating the physics knowledge into the model
development. Recent work on scientific Machine Learning [14, 13, 2] suggests this strategy
is effective and can lead to generalizable models.

The main goal of this work is to establish the viability of physics-aware machine learning
for the development of compact data-driven photocurrent models that are efficient enough
to allow large circuit simulations, while remaining faithful to the basic physics principles
embodied by models such as (1.1)–(1.3). To that end we adopt a setting that has been used
extensively in the past five decades at Sandia National Laboratories for the development of
compact analytic photocurrent models. Although this setting uses a simplified version of
the DDE, it provides a stepping stone towards future developments of data-driven models
based on the fully coupled system (1.1)–(1.3). In so doing we are able to leverage a wealth
of experiences and physics knowledge accumulated through the use of the existing compact
models, as well as provide a reference point for evaluation of our data-driven models.

We have organized the paper as follows. Section 2 reviews the current state-of-the
art in compact photocurrent models and establishes the physical basis for our data-driven
model. Section 3 briefly summarizes the finite element discretization of the physics model
used to generate synthetic training data. The core of the paper is Section 4 where we use
Dynamic Mode Decomposition ideas [16, 12, 7] to develop our model. Section 5 contains
computational results highlighting the performance of the model as well as comparison with
published results in [1]. We summarize our findings and discuss future research in Section
6.

2. Physics-Based Compact Analytic Photocurrent Models. Although the DDE
(1.1)-(1.3) accurately describes the behavior of the excess carriers, it does not lend itself to
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N D P

0 ℓn W ℓp

Light or radiation

Fig. 2.1: Traditional compact photocurrent model development splits each PN-junction within a device into a
depletion region D having width W , and quasi-neutral P and N regions with lengths `n and `p, respectively; see,
e.g., [1].

exact analytical solution. To enable analytic approximation of the governing equations, most
photocurrent models in use today follow the same basic approach as in the classic paper
[19] and split each PN -junction within a device into a depletion region and quasi-neutral
P - and N -regions; see Fig. 2.1. Carriers in the depletion region are quickly converted
to photocurrent and yield the so-called prompt photocurrent Iprompt. Carriers in the P
and N regions have a delayed response and produce the delayed photocurrents Ip and In,
respectively. As a result, the total photocurrent is given by

Itotal = Iprompt + Ip + In .

To calculate these currents one makes additional simplifying assumptions. The first is
the electrical neutrality approximation, which stipulates that the excess electron and hole
densities are equal throughout the entire device. The second is the congruence assumption,
which states that the electron and hole fluxes into or out of any region must be equal; see,
e.g., [9]. Under these assumptions the DDE model (1.1)-(1.3) in the P and N regions can
be replaced by the Ambipolar Diffusion Equation (ADE)

∂u

∂t
= Da∇2u− µaE · ∇u−

1

τa
u+ g (2.1)

where u, Da, µa and τa are the excess carrier density (electrons or holes), the ambipolar
diffusion coefficient, the ambipolar mobility and the carrier lifetime, respectively. In gen-
eral, these parameters may depend on the excess carrier density and, as a result, (2.1) is
still a nonlinear PDE. However, for moderate radiation dose rates these coefficients can be
approximated by constant values and the ADE becomes a linear parabolic PDE. The final
assumption is that the depletion region width W is not affected by the excess carriers and
is a constant. Under these assumptions, the prompt photocurrent is modeled as

Iprompt = qgAW ,

where A is the effective area of the PN -junction, while Ip and In are modeled by the ADE
(2.1).

At this point traditional compact photocurrent model development proceeds with de-
riving analytic approximations for the solutions of (2.1) in one dimension and using them
to obtain expressions for the delayed photocurrents. Early work [19] considered unbounded
P and N regions and negligible electric fields. The resulting Wirth-Rogers model tends to
overestimate the photocurrent as it neglects the effects of an ohmic contact at a finite dis-
tance from the depletion region [1]. Subsequent work [5] relaxed these conditions, assumed
that E is constant, and used approximate Laplace transforms to obtain analytic expressions
for Ip and In. However, approximation of the Laplace transform results in a model that
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yields unphysical current estimates when E exceeds roughly 10 V cm−1; see [20]. The lat-
ter work used Fourier analysis techniques to develop a more accurate photocurrent model
that avoids these drawbacks. The model in [20] was further improved in [1] by using a
transformation of (2.1) into an inhomogeneous heat equation and solving the latter exactly
by Fourier techniques. Another popular photocurrent model is the Fjeldly Model [6]. Un-
like the Axness-Kerr model [1], which solves the time-dependent equation (2.1) exactly, the
Fjeldly Model uses a steady-state solution of ADE combined with an RC delay circuit to
achieve time dependence.

In this work we adopt the above setting and focus on the development of physics-aware
compact data-driven models for the delayed photocurrents in the P - and N -regions that can
be used as ”plug-and-play” substitutes for conventional models. The core idea is to replace
the simplified analytic solutions of the ADE, comprising the basis of most standard compact
models, by a discrete-time dynamical system approximating the flow map of the ADE, i.e.
the “solution operator” that returns the internal device state at a given time as a function
of the history of states and external input values occuring at all previous times. In other
words, instead of approximating the analytic solution directly, the end model produces an
approximate solution via a system of difference equations.

To that end we apply a Dynamic Mode Decomposition (DMD) [16] approach to samples
of the internal state (carrier density) of the device obtained by solving (2.1) numerically by
a Finite Element Method (FEM). In this paper we assume that all device parameters such
as diffusion coefficients, carrier lifetimes and doping concentrations are known. In this case
ADE already contains all the necessary physics information and development of physics-
aware compact data driven models can be done entirely from synthetic data1.

A more general setting occurs when one or more of the ADE parameters are either un-
known or have large uncertainties. In this case the development of the compact model must
also include a parameter identification step to refine the ADE, which requires laboratory
data. Since the purpose of this paper is to demonstrate the viability of DMD as an effective
tool for the generation of compact device models, detailed discussion of this more general
setting is beyond the scope of this paper and will be addressed in a forthcoming work.

Regardless of the particular setting though the physics-awareness of our models stems
from the fact that they represent approximations of the flow map engendered by the physics
model, and built from simulated internal states of this model. These states contain physics
information that cannot be obtained by laboratory instruments, which can typically only
measure the currents at the device terminals. The latter may not be ”rich enough” for a
traditional ML approach, as well as for DMD, to obtain a reliable model of the underlying
causal physics.

3. Numerical solution of the ADE. We consider the ADE on the space-time domain
Ω := X ×T ⊂ R2, where X := (0, `) and T := (0, tfinal). Without loss of generality, one may
assume that X is the N -region of the device; see Fig. 2.1 and so we set ` = `n. To obtain
a well-posed problem, we augment equation (2.1) with homogeneous initial and boundary
conditions, i.e.,

u(x, 0) = 0 ∀x ∈ X and u(0, t) = u(`, t) = 0 ∀t ∈ T .

The homogenous initial condition corresponds to the fact that at t = 0 there are no excess
carriers present in the device. The boundary condition choice corresponds to assuming
infinite carrier recombination velocities and ohmic contacts at x = 0 and the boundary of

1In this setting the resulting compact model can be interpreted as a discrete reduced-order model of the
flow map induced by the ADE.
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the depletion region x = `; see [1]. More general boundary conditions not requiring these
assumptions can also be considered but are not necessary for the purpose of this work.

We will simulate the internal state of the device by using the method of lines to solve
the ADE numerically. For the spatial discretization we consider a standard Galerkin finite
element method and then solve the resulting system of Ordinary Differential Equations
(ODEs) using an implicit numerical integration scheme. For completeness we briefly review
the discretization process below.

Let X h denote a uniform2 partition of X into n+ 1 elements κi with vertices {xi}n+1
i=0 ,

i.e., κi = [xi, xi+1], i = 0, . . ., n, x0 = 0 and xn+1 = `. The mesh parameter is given by
h = `

n+1 .

As usual, L2(X ) denotes the space of all square integrable functions on X with norm
and inner product denoted by ‖ · ‖0 and (·, ·)0, respectively, and H1

0 (X ) is the Sobolev space
of order one whose elements are constrained to vanish at the boundary points. The weak
variational form of the ADE is then given by seek u ∈ H1

0 (X ) such that

(ut, v)0 +Q(u, v) = (g, v)0 ∀v ∈ H1
0 (X ) . (3.1)

The bilinear form Q(·, ·) : H1
0 (X )×H1

0 (X ) 7→ R is defined as

Q(u, v) = Da (ux, vx)0 + µaE (ux, v)0 +
1

τa
(u, v)0 . (3.2)

To discretize (3.1) in space we consider a nodal (Lagrangian) conforming finite element
subspace V h0 ⊂ H1

0 (X ); see, e.g., [4]. Let {vi}i=1,n be the standard nodal basis having the
property that vi(xj) = δij . We then seek an approximate solution of (2.1) as

uh(x, t) =

n∑

i=1

ui(t)vi(x) , (3.3)

where u(t) = (u1(t), . . . , un(t)) ∈ Rn is a vector of unknown solution coefficients. Inserting
(3.3) into the weak form (3.1) and restricting the test space to V h0 then yields the system
of ODEs

M u̇(t) +Ku(t) = g (3.4)

where M,K ∈ Rn×n are the (consistent) finite element mass and stiffness matrices with
elements

Mij = (vi, vj)0 and Kij = Q(vi, vj) ,

respectively, and g(t) ∈ Rn is a discrete source term with gi(t) = (g, vi)0.
The ODE system (3.4) can be solved by any standard time-integration scheme. However,

in general (3.4) is stiff and an implicit scheme is preferred. In this paper, we use an implicit
multi-step variable-order routine based on a backward differentitation formula (BDF) for
approximating the state derivative; for more details see [18]. This method is included by
default in the scipy.integrate submodule within the SciPy v1.5.1 package for Python
3.

2Utilizing a variable mesh spacing with increased node density near the boundary may provide some
potential advantages such as more accurate gradient estimation at the edge points, however in the context
of this work we restrict our attention to uniform meshes.
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4. A Dynamic Mode Decomposition Photocurrent Model. Assume that an ap-
proximate solution of the ODE (3.4) derived via FEM discretization is available at uniformly
spaced time steps tk := k∆t, k = 0, . . . ,m for some sampling interval ∆t > 0. Then, the
approximate numerical solution of the ADE can be represented as a linear discrete-time dy-
namical system describing the evolution of samples of the state u due to exogeneous input
g, i.e.,

uk+1 = Auk +Bgk (4.1)

where

uk := [u1(k∆t) · · ·un(k∆t)]T (4.2)

gk := [g1(k∆t) · · · gn(k∆t)]T (4.3)

and A,B ∈ Rn×n are linear maps. Expressing the system in this form facilitates the use of
many familiar system identification techniques. In particular, Dynamic Mode Decomposi-
tion (DMD) is a data-driven method for learning the maps A and B from a time series of
state and input measurements {uk,gk}mk=0, with the goal of identifying a small number of
dominant dynamic modes.

Below we summarize the DMD algorithm adapted for control inputs as described in
[12]. By organizing the samples into the following matrices

X =



| |

u0 · · · um−1

| |


 ; X ′ =



| |

u1 · · · um
| |


 ; and G =



| |

g0 · · · gm−1

| |


 , (4.4)

we can express the linear relationships within the data as

X ′ = AX +BG =
[
A B

] [X
G

]
=:
[
A B

]
S. (4.5)

Therefore the maps A and B can be approximated by
[
A B

]
≈
[
Ā B̄

]
:= X ′S† (4.6)

where † indicates the Moore-Penrose pseudoinverse. An efficient and accurate algorithm for
estimating the pseudoinverse of a rectangular matrix is realized via truncated singular value
decomposition. The matrix of samples S can be factored as

S = UΣV T =
[
Ũ Ũtrun

] [Σ̃ 0

0 Σ̃trun

] [
Ṽ T

Ṽ T
trun

]
≈ ŨΣ̃Ṽ T (4.7)

where U ∈ Rn×n, Ũ ∈ Rn×p, Σ ∈ Rn×m, Σ̃ ∈ Rp×p, V T ∈ Rm×m, and Ṽ T ∈ Rp×m. Here

trun denotes the m− p truncated singular values, so that the p greatest singular values are
kept. In practice, one sets an error tolerance and truncates all singular values below this
threshold. Now the pseudoinverse of S is naturally approximated by

S† = Ṽ Σ̃−1ŨT (4.8)

Substituting equation (4.8) into (4.6) gives

A ≈ Ā ≈ X ′Ṽ Σ̃−1Ũ1
T ∈ Rn×n (4.9)

B ≈ B̄ ≈ X ′Ṽ Σ̃−1Ũ2
T ∈ Rn×n, (4.10)

where Ũ =
[
ŨT

1 ŨT
2

]T
with Ũ1 ∈ Rn×p, Ũ2 ∈ Rn×p.
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4.1. Projection-Based Model Order Reduction. We can achieve a more compact
model by incorporating the projection ũ = Pu of the state onto the canonical dynamic mode
coordinates. In the same manner as equation (4.7), we factor the matrix X ′ ≈ ÛΣ̂V̂ T, where
the truncations are chosen to preserve the r greatest singular values. Then the projection
onto dynamic mode coordinates is given simply by P = ÛT ∈ Rr×n. The final reduced-order
model obtained via DMD is the discrete-time dynamical system:

ũk+1 = Ãũk + B̃gk (4.11)

ũ0 = ÛTu0 (4.12)

uk ≈ Û ũk, (4.13)

where

Ã := ÛTĀÛ = ÛTX ′Ṽ Σ̃−1Ũ1
T
Û ∈ Rr×r (4.14)

B̃ := ÛTB̄ = ÛTX ′Ṽ Σ̃−1Ũ2
T ∈ Rr×n. (4.15)

The parameter p represents the number of dynamic modes to fit to the data, which
controls the model precision. If a quantitative uncertainty analysis is desired, the Eckart-
Young theorem provides an avenue to bound the truncation error at this step as a function
of p. The parameter r represents the number of modes to project onto, that is, the order
of the final reduced-order model, which controls the model compactness. The case where
r > p usually results in diminished performance; r = p retains exactly the same number of
modes fit to the data in the compactified model; r < p results in a more compact model, but
ignores the p− r least significant modes fit to the data, which can result in slightly reduced
accuracy. In this work we will use r = p.

Remark 1. Our DMD model is constructed from synthetic data obtained by a numerical
solution of the ADE. Although traditional Reduced Order Models (ROM) also use synthetic
data generated by a “full order model” (FOM), there are some important distinctions between
such models and the approach in this paper. Specifically, ROM uses the synthetic data (the
“snapshots”) to define a reduced order trial basis and then finds the reduced order solution by
either projecting the FOM onto that basis or performing a least-squares residual minimization
[3, 15]. For transient problems state snapshots have to be generated at different times to allow
advancing the solution in time. In contrast, our approach directly learns a discrete solution
operator that advances the solution without invoking the full order model. In particular,
the DMD model can be equally well defined in the absence of a trusted FOM from bona
fide laboratory measurements. In this paper we chose to use synthetic data because ADE is
considered to be adequate for typical photocurrent applications of interest.

4.2. Training of the compact model. Construction of the DMD model (4.11) re-
quires training samples representing time series of state and input measurements {uk,gk}mk=0.
To generate such samples we recall the assumption in Section 2 that all device parameters
are known. In particular, here we consider a generic PN -junction device characterized by
the parameters in Table 4.1. The values in this table are adapted from [1] to enable a direct
comparison with a published compact photocurrent model.

We then select a suitable set of generation density functions {gktrain}Mk=1 and use the
computational scheme in Section 3 to solve (2.1) numerically with homogeneous initial and
Dirichlet boundary conditions. Selection of the inputs gktrain depends on the type of the
anticipated testing input(s) gtest for the model and will be revisited in Section 5.

Obtaining a numerical solution for the ADE requires proper scaling and non-dimensionalization
of the governing equations. For convenience we scale the computational domain X so that
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Table 4.1: ADE parameters for a generic PN -junction device

Parameter Value Units Description

` 3.075× 10−2 cm N-region length

Da 1.19× 101 cm2 s−1 diffusion coefficient

µa 4.64× 102 cm2 V−1 s−1 typical hole mobility for Si

`n 1.54× 10−2 cm2 s−1 diffusion length:
√
Daτa

τa 1.97× 10−5 s typical hole lifetime

E −20 or 0 V cm−1 electric field

C 1× 1017 cm−3 doping concentration

ĝ 4.3× 1022 cm−3 s−1 maximum generation density

u(x, t) variable cm−3 excess carrier concentration (ADE solution)

the length of the N -region, i.e., `, becomes a unit of length and tfinal becomes a unit of
time. After rescaling the domain and the equations the computational domain X becomes
the unit square, and the non-dimensional ADE coefficients are given by

Da = 0.063
µa = 0.063

;
Lp = 0.5
τa = 3.92

; and
E = −23.84 or 0
ĝ = 2.15

. (4.16)

We highlight that the numerical solution of the ADE constitutes the ”physics-based” ele-
ment of our procedure. Specifically, the physics information is incorporated by using trusted
a priori dynamics models—which are calibrated or driven by experimental measurements—
to generate training data from simulating the unobservable internal state of a device using
robust numerical techniques.

Remark 2. In this work we use the ADE as the physical basis for the data-driven model
because it has been used to develop almost all compact photocurrent models in use today, i.e.,
it is an example of model that is trusted based on decades-long practical experiences. How-
ever, we emphasize that the DMD algorithm is also suitable for more complex physics-based
models, such as the full drift-diffusion equations or detailed molecular dynamics simulations,
with the capability of producing dramatically reduced-order approximations that are feasible
to implement in high-level circuit simulators but remain faithful to the underlying physics.

5. Simulation Results. In the following section, we evaluate the performance of a
DMD model (4.11) that has been trained according to the procedures described in Section
4. Our numerical testing process is as follows. Let g(x, t) be a target generation density
for which we seek the response of our device. We sample g(x, t) in space using the vertices
defining the finite element mesh X h, and in time using a desired time step ∆t for a total
of m time steps. This sampling produces the inputs gk to the DMD model. We then set
u0 = 0 and use (4.11) to recover the internal state of the device, i.e., the excess carrier
concentration, at the mesh nodes {xi}ni=1 for every tk = k∆t:

ũk+1 = Ãũk + B̃gk , k = 0, . . . ,m− 1 .

Each vector ũk induces a C0 finite element function

uDMD
h (x, tk) =

n∑

i=1

ũi(tk)vi(x) (5.1)

which is the predicted internal carrier density. Using uDMD
h and taking into account the

homogeneous Dirichlet boundary condition uDMD
h (x0, tk) = uDMD

h (xn+1, tk) = 0, we define
the approximate boundary photocurrent at t = tk as

JDMD
h (x, tk) = Da∂xu

DMD
h (x, tk) = Da

n∑

i=1

ũi(tk)∂xvi(x), (5.2)
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for x = x0 and x = xn+1. Note that owing to the local support of the basis functions
vi(x), JDMD

h (x0, tk) and JDMD
h (x0, tk) only include contributions from the basis functions

supported on elements κ0 and κn, respectively. We then compare the predicted DMD
flux with simulated experimental measurements of the current out of the device terminals.
These measurements are obtained using the same numerical procedure as in Section 3, i.e.,
by computing a finite element solution uFEM

h (x, tk) and setting

JFEM
h (x0, tk) = Da∂xu

FEM
h (x0, tk) (5.3)

JFEM
h (xn+1, tk) = Da∂xu

FEM
h (xn+1, tk). (5.4)

5.1. Manufactured solution test. We first evaluate the ability of the DMD model
to reproduce an artificially manufactured solution:

uMNF(x, t) := te−2t sin
(3πx

`

)
. (5.5)

Observe that this solution satisfies homogenous initial and boundary conditions. Since (5.5)
is expressed in closed-form, we can directly compute the boundary photocurrent of the
manufactured solution:

JMNF(x, t) = Da∂xu
MNF
h (x, t) = Date

−2t
(3π

`

)
cos
(3πx

`

)
. (5.6)

Thus, for this test we will compare JDMD with the known manufactured solution cur-
rent JMNF, rather than with the simulated current JFEM in (5.3)–(5.4). Substitution of
uMNF(x, t) into the governing equation (2.1) yields a generation density

gMNF(x, t) =
∂uMNF

∂t
(x, t)−Da

∂2uMNF

∂x2
(x, t) + µaE(x)

∂uMNF

∂x
(x, t) +

1

τa
uMNF(x, t) (5.7)

= (1− 2t)e−2t sin
(3πx

`

)
+Date

−2t
(3π

`

)2
sin
(3πx

`

)
(5.8)

+ µaE(x)te−2t
(3π

`

)
cos
(3πx

`

)
+

1

τa
te−2t sin

(3πx

`

)
(5.9)

such that when the ADE (2.1) is driven by gMNF(x, t), its solution will exactly match the
desired manufactured solution uMNF(x, t). The inputs gk to the DMD model are obtained
by sampling gMNF(x, t) according to the method described earlier.

Since the input gMNF(x, t) corresponding to the manufactured solution is spatially ir-
regular, a spatially uniform training input will generally result in poor performance. To
address this, we design a sequence of localized pulses which will excite different regions of
the device. This sequence will then be used as the training input for the DMD model. We
choose to use a Gaussian profile that has been windowed by a cosine function as the spatial
envelope for the input pulses, where the window function is applied to restrict the support
of the envelope to a compact interval. This profile is consistent with experimentally viable
radiation doses; other reasonable choices include Lorenz or Voigt profiles, which reflect dif-
ferent radiation broadening mechanisms. The windowed Gaussian profile with center xi and
support [xi − w

2 , xi + w
2 ] is given by

ρi(x) :=

{
cos
(
π x−xi

w

)
exp

(
− 16

(
x−xi

w

)2)
if xi − w

2 ≤ x ≤ xi + w
2

0 if x < xi − w
2 or x > xi + w

2

(5.10)
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where xi = i `
Npulses−1 for i = 0, . . . , Npulses − 1, and w = `

Npulses−2 . The profiles ρi(x)

are illustrated in Figure 5.1. Combining the spatial envelopes defined above with a square
temporal envelope gives

gi(x, t) =

{
ĝρi(x) if 0 ≤ t ≤ 0.5 µs

0 otherwise
, (5.11)

where the value of ĝ is defined in (4.16). Now we can express the training input as

gtrain =

Npulses−1∑

i=0

gi(x, t− ti) (5.12)

where ti = i(5.0 µs) for i = 0, . . . , Npulses−1. For the manufactured solution (5.5), we choose
Npulses = 10.

To generate the training samples, we solve (2.1) with the source (5.12) and the parame-
ters (4.16) on a mesh X h comprising 512 uniform elements, and sample the solution in time
at ∆t = 0.005 µs increments.

Training input spatial envelopes
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Fig. 5.1: Generation density function gtrain used to obtain the training set, and gtest used to verify the model
performance. The square edges in the training input are included to excite a wider range of dynamic modes, which
is due to the high-bandwidth content in the sharp transitions.

Using the the manufactured photocurrent (5.6) and carrier density (5.5) and approxi-
mate photocurrent (5.2) and approximate carrier density (5.1) derived from the DMD model,
we define the following error quantities:

EJ(t) := |JDMD
h (t)− JMNF(t)| (5.13)

Eu(t) := |uDMD
h (t)− uMNF(t)| (5.14)

which will characterize the ability of the DMD model to reproduce manually selected dy-
namic modes. For simplicity, in this work the electric field is not considered an input to
the system, so the DMD model must be trained separately for each unique electric field
strength.

We report results for the DMD model using several different values for the parameter
p, which defines the number of the greatest singular values kept in the truncated SVD de-
composition (4.8). Figure 5.3 compares the boundary photocurrent from the manufactured
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Fig. 5.2: Normalized photocurrent due to the manu-
factured input (5.7) with no electric field applied. The
top two plots show the manufactured solution (5.6),
FEM solution (5.3)-(5.4), and DMD solution (5.2), and
the bottom two plots show the DMD and FEM error
(5.13). The left two plots correspond to the flux out of
the left side of the N-region, and similarly on the right.
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Fig. 5.3: Normalized photocurrent due to the man-
ufactured input (5.7) with an electric field (4.16) ap-
plied. The top two plots show the manufactured solu-
tion (5.6), FEM solution (5.3)-(5.4), and DMD solution
(5.2), and the bottom two plots show the DMD and
FEM error (5.13). The left two plots correspond to the
flux out of the left side of the N-region, and similarly
on the right.
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Fig. 5.4: Simulated excess carrier density due to the
manufactured input (5.7) with no electric field applied.
The top three plots show the manufactured solution
(5.5), FEM solution (3.3), and DMD solution (5.1), and
the bottom three plots show the DMD and FEM error
(5.14).
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Fig. 5.5: Simulated excess carrier density due to the
manufactured input (5.7) with an electric field (4.16)
applied. The top three plots show the manufactured
solution (5.6), FEM solution (3.3), and DMD solution
(5.1), and the bottom three plots show the DMD and
FEM error (5.14).

solution and from the FEM and DMD models subject to the manufactured input (5.7).
Figures 5.5 and 5.7 show the carrier density from the manufactured solution and from the
FEM and DMD models, with respect to time t or position x, respectively. Figures 5.2, 5.4,
and 5.6 show the same, but in the absence of an electric field.
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Fig. 5.6: Snapshot of the manufactured excess carrier
density at t = 5.0 µs due to the manufactured input
(5.7) with no electric field applied. The top plot shows
the manufactured solution (5.6), FEM solution (3.3),
and DMD solution (5.1), and the bottom plot shows
the DMD and FEM error (5.14).
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Fig. 5.7: Snapshot of the manufactured excess carrier
density at t = 5.0 µs due to the manufactured input
(5.7) with an electric field (4.16) applied. The top plot
shows the manufactured solution (5.6), FEM solution
(3.3), and DMD solution (5.1), and the bottom plot
shows the DMD and FEM error (5.14).

Training input and test input functions

0.0 0.5 1.0 1.5 2.0 2.5

Time t [µs]

0.0

0.5

1.0

1.5

2.0

G
en

er
at

io
n

de
ns

ity
g
(ℓ

,t
)

gtrain(ℓ, t)

gtest(ℓ, t)

Fig. 5.8: Generation density function gtrain used to obtain the training set, and gtest used to verify the model
performance. The square edges in the training input are included to excite a wider range of dynamic modes, which
is due to the high-bandwidth content in the sharp transitions.

5.2. Verification test. In this test we compare our compact DMD model with the
Axness-Kerr [1] compact analytic model. We consider the case of a lightly doped diode as
described in [1, Section B, p.2650] for which the length of the N -region equals 2 diffusion
lengths (case ξp = 2 in [1, Figure 3, p.2651].) The device is irradiated by a 1.0 µs step pulse

gtest(x, t) =

{
ĝ if 0 ≤ t ≤ 1.0 µs

0 otherwise
(5.15)

with the value of ĝ rescaled as in (4.16). This example from [1] corresponds to the parameters
in 4.16 with the exception of a few corrections to account for typographical errors in that
paper.
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In contrast to the manufactured solution test where the desired input gMNF(x, t) to the
model is spatially irregular, now the target generation density, defined in (5.15), is spatially
constant. As a result, the training input does not have to excite different regions of the
device and can be chosen to be spatially constant as well. Thus, for this example we choose
the training input gtrain(x, t) to be a constant in space and a discontinuous piecewise linear
in time function such that

gtrain(x, t) =





0 if 4t < 0 µs or 2 ≤ 4t < 5 µs or 4t ≥ 7 µs

ĝ(4t) if 0 ≤ 4t < 1 µs

ĝ if 1 ≤ 4t < 2 µs or 5 ≤ 4t < 6 µs

ĝ(7− 4t) if 6 ≤ 4t < 7 µs

, (5.16)

See Figure 5.8 for an illustration of gtrain and gtest.
We then solve (2.1) with the source (5.16) and the parameters (4.16) on a mesh X h

comprising 1024 uniform elements, and sample the solution in time at ∆t = 0.0025 µs
increments. The compact DMD photocurrent model for the device is now defined according
to (4.11).

Remark 3. Since the input is applied uniformly across the entire device (and thus the
entire state space), we could reduce the input dimension of the DMD model (4.11) from N
to 1, however the higher dimensional input permits spatially irregular excitations such as
localized radiation pulses or non-transversal plane waves as required for the manufactured
solution test in Section 5.1.

To determine an appropriate dimension for the reduced-order DMD model, it is infor-
mative to inspect the relative magnitudes of the singular values from the decompositions
of the sample matrices. For the training input (5.16), Figure 5.9 illustrates the magnitude
roll-off in the singular values for the state and state-input sample matrix decompositions.
Observe that even for tight error thresholds, only a few modes are necessary to construct
an accurate approximation of the state transition and input matrices.

We wish to emphasize that including too many modes in the reduced-order model
often leads to a realization which is unstable over a long time horizon. This phenomenon
occurs due to unstable modes corresponding to small singular values. Including these low-
magnitude modes will typically lead to a better fit for the state dynamics resulting from
the training input over the original training time horizon, but may lead to model divergence
over a longer time horizon, signifying an example of overfitting.

Based on the photocurrent (5.3)-(5.4) and carrier density (3.3) derived from the finite-
elements model and the approximate photocurrent (5.2) and approximate carrier density
(5.1) derived from the DMD model, we redefine the following error quantities:

EJ(t) := |JDMD
h (t)− JFEM

h (t)| (5.17)

Eu(t) := |uDMD
h (t)− uFEM

h (t)| (5.18)

which will facilitate the performance evaluation of the DMD model for typical, spatially
uniform input functions. As before, the DMD model must be trained separately for each
electric field strength.

Again, we show the results for the DMD model using multiple values for the parameter
p. However, observe that for the case where the generation density is spatially uniform,
fewer modes are necessary to achieve good performance than when the input magnitude
varies along the length of the device, as in the manufactured solution test. Figures 5.10
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Fig. 5.9: When listed from greatest to least, the singular values in the decomposition of the state-input sample

matrix S (Σ̃) and state sample matrix X′ (Σ̂) demonstrate a nearly exponential decay in magnitude.

and 5.11 compare the boundary photocurrent produced by the FEM and DMD models for
the training input (5.16) and test input (5.15), respectively. Figures 5.12 and 5.13 show the
same, but in the absence of an electric field. Figures 5.14 and 5.15 illustrate the simulated
excess carrier density (i.e., the internal state) from the FEM and DMD models for both the
training and test inputs.

Several conclusions can be drawn from these results. First, the photocurrent plots at the
left boundary of the N -region shown in Figures 5.11 and 5.13 are in an excellent agreement
with the results reported in [1, Figure 3, p.2651] for ξp = 2. Second, the error plots on
the bottom rows of the figures quantify the differences between the reference FEM solution
and its DMD approximation as a function of the number p of selected dynamical modes.
These results reveal that, as expected, the error decreases with increase of the number of
dynamic modes; however, even with just 6 modes selected the DMD photocurrent model
yields excellent accuracy. Overall, these results suggest that a data-driven approach is indeed
a viable and effective alternative to traditional analytic model development that can be used
to quickly develop accurate and computationally efficient photocurrent models directly from
data.
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Fig. 5.10: Normalized photocurrent due to the train-
ing input (5.16) with an electric field (4.16) applied.
The top two plots show the FEM solution (5.3)-(5.4)
and DMD solution (5.2), and the bottom two plots
show the DMD training error (5.17). The left two plots
correspond to the flux out of the left side of the N-
region, and similarly on the right.
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Fig. 5.11: Normalized photocurrent due to the test
input (5.15) with an electric field (4.16) applied. The
top two plots show the FEM solution (5.3)-(5.4) and
DMD solution (5.2), and the bottom two plots show
the DMD training error (5.17). The left two plots cor-
respond to the flux out of the left side of the N-region,
and similarly on the right.
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Fig. 5.12: Normalized photocurrent due to the train-
ing input (5.16) with no electric field applied. The top
two plots show the FEM solution (5.3)-(5.4) and DMD
solution (5.2), and the bottom two plots show the DMD
training error (5.17). The left two plots correspond to
the flux out of the left side of the N-region, and simi-
larly on the right.
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Fig. 5.13: Normalized photocurrent due to the test
input (5.15) with no electric field applied. The top
two plots show the FEM solution (5.3)-(5.4) and DMD
solution (5.2), and the bottom two plots show the DMD
training error (5.17). The left two plots correspond to
the photocurrent out of the left side of the N-region,
and similarly on the right.
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Fig. 5.14: Simulated excess carrier density due to
the training input (5.16) with an electric field (4.16)
applied. The top three plots show the FEM solution
(3.3) and DMD solution (5.1), and the bottom three
plots show the DMD training error (5.18).
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Fig. 5.15: Simulated excess carrier density due to the
test input (5.15) with an electric field (4.16) applied.
The top three plots show the FEM solution (3.3) and
DMD solution (5.1), and the bottom three plots show
the DMD test error (5.18).
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Fig. 5.16: Simulated excess carrier density due to
the training input (5.16) with no electric field applied.
The top three plots show the FEM solution (3.3) and
DMD solution (5.1), and the bottom three plots show
the DMD training error (5.18).
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Fig. 5.17: Simulated excess carrier density due to
the test input (5.15) with no electric field applied. The
top three plots show the FEM solution (3.3) and DMD
solution (5.1), and the bottom three plots show the
DMD test error (5.18).
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6. Conclusions. We have developed a compact data-driven delayed photocurrent model
given by a low-dimensional discrete-time dynamical system, which approximates the flow
map of the Ambipolar Diffusion Equation. To obtain the approximate flow map we use
the Ambipolar Diffusion Equation to reconstruct numerically the internal state of the de-
vice, which is not directly observable through a laboratory measurement, and then apply
Dynamic Mode Decomposition to the simulated internal state samples. In doing so physics
knowledge is incorporated into the model development, which allows us to obtain models
from sparse data sets that accurately approximate the dynamics of the excess carrier density.
This in turn allows us to accurately estimate the induced current at the device boundaries,
which is the quantity required for circuit simulations.

Our results confirm that such physics-aware data-driven models are a viable alternative
to traditional analytic compact models that use simplified analytic solutions of the governing
equations and often must undergo recalibration and/or redevelopment to include new physics
effects.

Our future work will consider extension of the approach to include an additional pa-
rameter identification step, and to the fully coupled DDE (1.1)-(1.3). The latter will allow
us to model the total photocurrent in the device and eliminate the need to split it into three
separate regions.

Applying nonlinear observable functions to the state of the DDE would allow us to
model the nonlinear problem using the same DMD algorithm, requiring little to no addi-
tional computational cost for running and training the DMD model (besides applying the
nonlinearities to the measurement data, which is inexpensive). We also plan to incorporate
and test our models in circuit simulators to demonstrate their utility for circuit design and
analysis tasks.
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CLASSICAL APPROXIMATIONS OF SPECIAL FERMIONIC
MANY-BODY SYSTEMS

DANIEL G. HOTHEM‡ AND OJAS PAREKH§

Abstract. Finding the lowest energy or ground states of quantum many-body systems with local
interactions is a topic of study in a diverse range of fields such as condensed matter physics, quantum
chemistry, and theoretical computer science. Difficult to accomplish in general, there has been a recent
growth of interest in rigorous classical approximations to ground states of such systems. Our paper builds
upon the work of Bravyi, Gosset, Koenig, and Temme to better understand how approximation schemes for
k-local qubit systems can be applied to fermionic many-body systems with local interactions. We accomplish
this by applying Gharibian and Parekh’s product state approach to a subclass of fermionic Hamiltonians.

1. Introduction. Quantum many-body problems with local interactions are of interest
to a diverse class of researchers ranging from condensed matter physicists to theoretical
computer scientists. Initially posed to study various physical systems, these quantum many-
body systems are a natural setting for the quantum analog of many classical constraint
satisfaction problems through their connection to k-local Hamiltonians. Past work, such
as that in [2] and [3], has shown how the celebrated classical algorithm of Goemans and
Williamson[4] can be applied to optimization problems involving k-local Hamiltonians.

In this paper we begin by reviewing the basics of two-local qubit Hamiltonians in Sec-
tion 2 by following Gharibian and Parekh’s paper[3]. In Section 3, we outline the approach
taken by Bravyi et al.[2] to approximating traceless two-local fermionic Hamiltonians. We
then end in Section 4 by demonstrating that the product states used by Gharibian and
Parekh form a special subclass of the states used by Bravyi et al., uniquely characterized
by a diagonalizability criterion on the state’s covariance matrix. This further adds to our
understanding of the connection between k-local systems of qubits and the k-local systems
of fermionic particles that are so widely found across modern physics.

2. Two-Local Qubit Hamiltonians. Let N ∈ Z>0 be the number of qubits in a
system. Any traceless 2-local qubit Hamiltonian may be written as

H = H1 +H2 (2.1)

H1 =

3N∑

j=1

DjPj and H2 =

3N∑

i,j=1

DijPiPj (2.2)

Here each Pj represents a Pauli operator. Specifically, the Pauli operator acting on the j-th
qubit is given by P3j−2 = Xj , P3j−1 = Yj , and P3j = Zj where

X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]
.

Typically, one is interested in finding the maximum eigenvalue λmax(H) of H. Unfor-
tunately, computing this exactly or to within some small additive error is QMA-hard [5].
As detailed earlier, it is often more convenient to approximate λmax(H) by some λ̃ with a

‡Department of Mathematics, University of Oregon, dhothem@uoregon.edu
§Sandia National Laboratories, odparek@sandia.gov
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good approximation ratio λ̃/λmax(H). In order to accomplish this we seek to maximize the
expectation of H over a particular subset of quantum states.

A natural subset to optimize over is the subset of product states[3]. For N qubits,
a product state is an N -fold tensor product of single-qubit density matrices. The set of
single-qubit density matrices is denoted D(C2). The density matrix of a single qubit may
be written as

ρ =
1

2

(
I + αX + βY + γZ

)
=

1

2
(I + r · σ) where ‖r‖ ≤ 1 and σ = (X,Y, Z).

Thus any N -qubit product state can be written as

ρ =
1

2N

N⊗

i=1

(
I + αiXi + βiYi + γiZi

)
. (2.3)

More generally, any separable state on N qubits is an element of the convex hull of the
set of product states, SEP = conv(⊗Ni=1ρi|ρi ∈ D(C2)). Our optimization problem is then
recast as

λprod = max
ρ∈SEP

tr(Hρ).

Because of convexity, λprod is obtained by some pure product state ρ. Pure states are those
for which tr(ρ2) = 1. They are those for which there is no classical uncertainty about the
state of the system, although a natural quantum mechanical uncertainty still remains.

3. Traceless Two-Local Fermionic Hamiltonians. Product states are not the only
convenient states to optimize over. Another such set of states are Gaussian states, which
come from viewing a two-local qubit Hamiltonian as a traceless two-local fermionic Hamil-
tonian. Following [2], The Hilbert space of n fermionic modes has a basis given by binary
strings of length n, x ∈ {0, 1}n. A one in the j-th slot means that the j-th mode is occupied,
while a zero in the j-th slot means that the mode is unoccupied.

Hamiltonians for these systems are built out of annihilation and creation operators.
The j-th annihilation operator aj reduces a state’s j-th mode’s occupation number by one
if the j-th mode is occupied or maps the state to 0 if the j-th mode is unoccupied. The
j-th creation operator a†j increases the state’s j-th occupation number if the j-th mode is
unoccupied and otherwise maps the state to 0. Crucially, the annihilation and creation
operators satisfy the following canonical anticommutation relations:

{ai, aj} = 0 and {a†i , aj} = δijI.

Typical Hamiltonians of interest take the following form

H = H1 +H2 + ωI (3.1)

H1 =

n∑

p,q=1

Vp,qa
†
paq and H2 =

n∑

p,q,r,s=1

Wpqrsa
†
pa
†
qaras (3.2)

The coefficients Vp,q and Wp,q,r,s are complex numbers carefully chosen so that H is her-
mitian. Any such Hamiltonian can be rewritten as a two-local Hamiltonian as laid out in
[2].
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Fermionic Gaussian states are more easily defined via Majorana operators rather than
annihilation and creation operators. To each fermionic mode j, one can associate two
Majorana operators or modes by

c2j−1 = aj + a†j and c2p = (−i)(ap − a†p). (3.3)

By definition, each Majorana operator is hermitian. Furthermore they satisfy the com-
mutation rule {cp, cq} = 2δp,qI. They generate the Clifford algebra C2n. Gaussian states
correspond to a subset of C2n [1]:

Definition 3.1. Let H be a Hilbert space of n fermionic modes. For any orthogonal
matrix R ∈ O(2n) define the following unitary operator UR ∈ U(n) by

(UR)†cp(UR) =

2n∑

q=1

Rp,qcq. (3.4)

A state ψ ∈ H is Gaussian if it is of the form UR|0〉n for some R ∈ O(2n).
For our purposes it is easier to work with mixed Gaussian states [1]. These are best

defined with the use of Grassmann variables. Any two Grassmann variables anti-commute
θiθj = −θjθi, forcing each variable to square to zero. Together 2n Grassmann variables
generate the Grassmann algebra G2n. There exists an isomorphism of vector spaces between
C2n and G2n which maps monomials of Majorana operators to

ω(cj1 . . . cjk , θ) = θj1 . . . θjk .

Definition 3.2. Let ρ ∈ C2n be the density operator for some state on n fermionic
modes. The state is Gaussian if and only if the Grassmann representation of ρ has the
following form

ω(ρ, θ) =
1

2n
exp(

i

2
θTMθ)

for some real 2n × 2n antisymmetric matrix M . M is called the correlation matrix of ρ.
Note that if ρ ∈ C2n is Gaussian, then its correlation matrix stores information about

the two-point correlators of ρ. In fact, each entry of M is given by

Mab =
i

2
tr(ρ[ca, cb]) =

{
tr(iρcacb) for a 6= b

0 for a = b
(3.5)

A quick computation verifies that if UR is defined as in equation 3.4, then

ω((UR)†ρ(UR), θ) = ω(ρ, η) where ηj =

2n∑

b=1

Rabcb. (3.6)

Under this basis change, the correlation matrix of (UR)†ρ(UR) becomes RTMR.
Not only are Majorana operators useful for defining Gaussian states, but by inverting

the equations in equation 2.3 we can rewrite any traceless two-local fermionic Hamiltonian
from equations 2.1 and 2.2 as below[2]:

H = H1 +H2 (3.7)
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H1 =

2n∑

p,q=1

ivpqcqcq and H2 =

2n∑

p,q,r,s=1

Wpqrscpcqcrcs (3.8)

These Majorana operators also allow one to embed any qubit Hamiltonian of the form
in equation 2.1 as a traceless two-local fermionic Hamiltonian [2]. Let n = 3N/2 and assume
for simplicity that N is even. Map the Paulis into quadratic polynomials of the Majorana
operators as follows:

Xp = ic3p−2c3p−1, Yp = ic3p−1c3p, Zp = ic3p−2c3p. (3.9)

This transformation preserves eigenvalues. In order to preserve the proper normalization of
a mixed state you must rescale the pushforward of any qubit density matrix by a factor of

1
2N/2 .

4. Product States as Gaussian States. The embedding of the Pauli operators into
C2n leads to a natural question. Are product states Gaussian? The following lemma answers
this question affirmatively.

Lemma 4.1. Let ρ be the density matrix for some product state on N -qubits. Then ρ
embeds as a Gaussian state under the embedding in equation 3.9. Furthermore, any Gaussian
state whose correlation matrix M can be brought into the following 3x3 anti-symmetric block
diagonal form by some matrix R ∈ SO(3N) comes from some embedding of a product state

RTMR =
1

23N/2
diag

(



0 α1 γ1

−α1 0 β1

−γ1 −β1 0


 , . . . ,




0 αN γN
−αN 0 βN
−γN −βN 0



)
. (4.1)

It is then natural to ask what elements of R ∈ SO(3N) transform the correlation
matrices of qubit Gaussian states into their canonical 2x2 block diagonal form. In this
case, each 3x3 block can be handled separately. In this case, R ∈ SO(3). The columns of
R correspond to the two singular vectors of M as well as the one zero eigenvector of M .
Details are left to the appendix.

5. Conclusions. In this paper we further explored the connection established by
Bravyi, Gosset, Koenig, and Temme between two-local qubit Hamiltonians and traceless
two-local fermionic Hamiltonians. Specifically, we demonstrated that the class of product
state solutions to a qubit Hamiltonian make up a subclass of fermion Gaussian states. We
further classified all fermionic Gaussian states that come from product states of qubits.
Fruitful future work includes classifying traceless two-local fermionic Hamiltonians that
come from two-local qubit Hamiltonians as well as investigating other nice subclasses of
fermionic Gaussian states.

Appendix A. Proof of Lemma 4.1. Assume that the number of qubits N is even.
We begin by showing that the pushforward of the density matrix of a product state to
C3N fulfills definition 3.2. Let ρ be the density matrix of a product state as defined in
equation 2.3. When appropriately scaled, ρ maps to the following polynomial in C3N under
the embedding described in equation 3.9

ρ→ ρ̃ =
1

23N/2

N∏

j=1

(
I + iαjc3j−2c3j−1 + iβjc3j−1c3j + iγjc3j−2c3j

)
. (5.1)

Expanding out ρ̃ gives

ρ̃ =
1

23N/2

(
I + i

N∑

j=1

(αjc3j−2c3j−1 + βjc3j−1c3j + γjc3j−2c3j) +O(c4)
)
. (5.2)
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The higher order terms in the expansion of ρ̃ do not matter in the computation of ρ̃’s
correlation matrix M (any monomial of Majorana operators that does not resolve to the
identity is traceless). Because distinct Majorana operators anti-commute, ρ̃ must have a
correlation matrix of the form in equation 4.1.

Using this correlation matrix M a short computation verifies that

θTMθ = 2

N∑

j=1

αjθ3j−2θ3j−1 + βjθ3j−1θ3j + γjθ3j−2θ3j (5.3)

Substituting this in to the definition of ω(ρ̃, θ) and using the fact that each summand
is in the center of the Grassmann algebra gives

ω(ρ̃, θ) =
1

23N/2

N∏

j=1

exp
(
i(αjθ3j−2θ3j−1 + βjθ3j−1θ3j + γjθ3j−2θ3j)

)
(5.4)

=
1

23N/2

N∏

j=1

(
I + iαjθ3j−2θ3j−1 + iβjθ3j−1θ3j + iγjθ3j−2θ3j

)
. (5.5)

This is exactly what one gets for ω(ρ̃, θ) by using equation 5.1 directly.
Now suppose that ρ is a Gaussian state whose correlation matrix M is 3x3 block diag-

onalized as in equation 4.1 by some element R ∈ SO(3N). Let φ be the embedding laid out
in equation 3.9 and define a new embedding φ̃ by

Xp = i

3N∑

b=1

R3p−2,bcb

3N∑

b=1

R3p−1,bcb, Yp = i

3N∑

b=1

R3p−1,bcb

3N∑

b=1

R3p,bcb,

Zp = i

3N∑

b=1

R3p−2,bcb

3N∑

b=1

R3p,bcb

. (5.6)

It is established in [1] that (UR)†ρ(UR) has RTMR as its correlation matrix. From the
correlation matrix, we have

(UR)†ρ(UR) = φ
( 1

2N

N∏

j=1

I + αjXj + βjYj + γjZj

)
.

Let F ∈ C[x1, . . . , x3N ] be the polynomial that, when evaluated on the Majorana operators,
gives (UR)†ρ(UR). By using equation 3.4 to commute (UR)† past the Majorana operators,
we get that

ρ = F
( 3N∑

b=1

R1bcb, . . . ,

3N∑

b=1

R3N,bcb

)
= φ̃

( 1

2N

N∏

j=1

I + αjXj + βjYj + γjZj

)
.

Therefore ρ comes from some embedding of a product state. �

Appendix B. Some elements of SO(3). Let M be a real anti-symmetric 3x3 matrix
of the following form:

M =




0 α γ
−α 0 β
−γ −β 0






D.G. Hothem and O. Parekh 279

Without loss of generality, assume that β 6= 0. M is brought into canonical form by the
following element of SO(3)




α√
α2+β2+γ2

γ
β −−αβ(−β2γ2+(α2+β2)(α2+γ2))−βγ(αβ2γ+αγ(α2+γ2))

(α2+γ2)(−β2γ2+(α2+β2)(α2+γ2))

− αγ

β
√
α2+β2+γ2

1 − αβ2γ+αγ(α2+γ2)
−β2γ2+(α2+β2)(α2+γ2)

− β√
α2+β2+γ2

− γ2

β
√
α2+β2+γ2

0 1




The first two column vectors correspond the singular values of M , while the final column
vector is a zero eigenvector of M .
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ETD-RK EXPONENTIAL INTEGRATORS FOR THE NONHYDROSTATIC
ATMOSPHERE MODEL HOMME-NH.

CASSIDY F. KRAUSE∗ AND ANDREW J. STEYER†

Abstract. The nonhydrostatic atmosphere model HOMME-NH requires integrating an additively
partitioned stiff initial value problem. The current standard is to integrate in time using a horizontally
explicit, vertically implicit (HEVI) partitioning with an implicit-explicit Runge Kutta (IMEX-RK) scheme.
However, the linearization of the stiff terms in HOMME-NH yields a sparse matrix consisting of blocks
that are either diagonal or tridiagonal, making it an excellent candidate for efficient computation of the
matrix exponential. Here we explore exponential time differencing Runge Kutta (ETD-RK) methods as an
alternative time integrator for HOMME-NH. We present various ETD-RK methods that maximize efficiency
by keeping stage value computations and storage to a minimum, and we compare the accuracy and stability
regions of these methods.

1. Introduction. Exponential time differencing-Runge Kutta (ETD-RK) methods were
developed first in the 1970s as time integrators to solve stiff initial value problems (IVPs),
but the computational expense of forming the matrix exponential, a key component of ETD-
RK methods, prevented their widespread use until more recent decades. We consider the
use of ETD-RK methods with the nonhydrostatic atmosphere model HOMME-NH.

Once discretized in space, the evolution of the state variables of HOMME-NH can be
written as an ODE that is additively partitioned into stiff and nonstiff terms. The current
implementation of HOMME-NH uses an implicit-explicit Runge Kutta (IMEX-RK) time
integrator, but there are many other timestepping techniques that also work well with
stiff IVPs, such as ETD-RK methods. Furthermore, the linearization of the stiff terms of
HOMME-NH provides a Jacobian with structural properties that expedite the process of
forming the matrix exponential - this suggests that exponential type integrators may be a
competitive alternative to the IMEX-RK methods.

While many ETD-RK methods have been developed and studied extensively ([4],[5]),
in this paper we design ETD-RK methods specifically for timestepping in HOMME-NH.
That is, we develop second and third order methods that minimize computational costs and
storage of stage values, while maximizing the stability region relevant to HOMME-NH.

The rest of the paper is structured as follows: Section 2 gives the background of
HOMME-NH and ETD-RK methods, and Section 3 investigates how the structure of the
Jacobian from HOMME-NH can be exploited to efficiently compute the matrix exponential.
Section 4 explores various ETD-RK methods, and Section 5 discusses their performance and
implementation in HOMME-NH.

2. Background.

2.1. HOMME-NH. We begin by presenting a brief summary of the nonhydrostatic
atmosphere model HOMME-NH; for a more thorough description, see [8]. HOMME-NH is
an energy-conserving atmosphere model, given by the following system of equations:

∂u

∂t
+ (∇η × u + 2Ω)× u +

1

2
∇η (u · u) +

dη

dt

∂u

∂η
+

1

ρ
∇ηp = 0,

∂w

∂t
+ u · ∇ηw +

dη

dt

∂w

∂η
+ g(1− µ) = 0,

∂φ

∂t
+ u · ∇ηφ+

dη

dt

∂φ

∂η
− gw = 0,
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∂Θ

∂t
+∇η · (Θu) +

∂

∂η

(
Θ
dη

dt

)
= 0,

∂

∂t

(
∂π

∂η

)
+∇η ·

(
∂π

∂η
u

)
+

∂

∂η

(
π
dη

dt

)
= 0.

The equation of state is
∂φ

∂η
= −RΘΠ/p. The variables of HOMME-NH are summarized in

Table 2.1.

Table 2.1: Variables in HOMME-NH

Variable Description
g Gravitational constant

u = (u, v)
T

Horizontal velocity
w Vertical velocity
φ Geopotential
θ Potential temperature
p Nonhydrostatic pressure
π Hydrostatic pressure
Π Exner pressure
η Mass-based hybrid terrain-following

vertical coordinate
R Gas constant

µ ∂p
∂η/

∂π
∂η

Θ ∂π
∂η θ

We integrate these equations on a cubed sphere discretization. As discussed in [7],
there is a discrepancy in the vertical scale (O(10) m) and the horizontal scale (O(1) km),
which results in the propagation of numerically stiff acoustic waves in the vertical direction.
Consequently, the step-size of standard explicit integrators becomes restricted for stability
reasons making them overly expensive. On the other hand, the solves required by standard
fully implicit integrators are also prohibitively expensive. In [7], they recognize that the
stiff terms of HOMME-NH are only those which involve the coupling of the vertical velocity
w, the geopotential φ, and µ. This means that the evolution of the state variables can be
additively partitioned into the stiff terms s and nonstiff terms n as

ωt =




ut
wt
φt
θt
∂π
∂η




= g(ω) := s(ω) + n(ω), (2.1)

where

s(ω) =




0
−g(1− µ)

gµ
0
0



.
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The traditional approach in atmospheric modeling is to integrate such a partitioned system
with an IMEX-RK time integrator, where the stiff terms are treated with an implicit RK
method and the nonstiff terms are treated with an explicit RK method, as described in [7]
and [10]. Since the stiff terms involve only the vertically propagating acoustic waves, this is
often referred to as a horizontally-explicit, vertically-implicit (HEVI) partitioning.

There are many other ways to integrate a stiff IVP; one such approach is ETD-RK
methods. These require an additive partitioning that is slightly different than (2.1). At
each time step tm, we linearize around the state ωm, which gives the sparse, time-dependent
Jacobian

Lm =




0

0 g∂µ∂φ
gI 0

0
0



,

where
∂µ

∂φ
is tridiagonal. As we will see in Section 3, the structure of this Jacobian lends itself

to efficient computation of the matrix exponential, making exponential-type integrators an
attractive candidate for timestepping in HOMME-NH.

The new additive splitting we use for ETD-RK methods is given by

ωt = Lmω(tm) +N(ω(tm)), (2.2)

where N(ω(tm)) = g(ω(tm))− Lmω(tm) consists of the nonstiff terms, along with the non-
linear terms of the stiff part. By using this splitting, we are implicitly assuming that most
of the stiffness is encompassed in the linear part of the stiff terms.

2.2. Exponential Time Integrators. The construction and analysis of ETD-RK
methods have been discussed in depth; see, for example, [4], [1] and [5]. We briefly summarize
the theory of ETD-RK methods here.

An s-stage ETD-RK method gives the step update as

ωm+1 = eLm∆tωm +∆t

s∑

i=1

biN(Umi)

Umi = eciLm∆tωm +∆t

i−1∑

j=1

aijN(Umj),

where the {aij}, {bi}, and {ci} are presented in the form of a Butcher tableau
c A

bT

Unlike regular Runge Kutta (RK) methods whose Butcher tableaux are filled with
constant values, ETD-RK methods use exponential or exponential-type functions of ∆tLm
for the {aij} and {bi} values. These exponential-type functions are called ϕ-functions, and
they are defined as

ϕk(z) =

∞∑

n=0

zn

(k + n)!
.

This series definition of the ϕ-functions is particularly helpful for analysis purposes. For
example, we may consider the underlying RK method, which is found by taking the constant
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values of the series expansion of each of the terms in the Butcher tableau of a given ETD-
RK method. In implementation, however, it may be more practical to use the recursive
definition

ϕk+1(z) = z−1(ϕk(z)− ϕk(0)), with ϕ0(z) = ez.

Two important characteristics of any numerical timestepper are its order and its stability
region, both of which determine the accuracy and size of timestep we are able to use.

Definition 2.1. A numerical method is said to be consistent if the method limits to the
true solution as we refine the step-size ∆t. Given an s-stage ETD-RK method with Butcher

tableau
c A

bT
, the conditions required for consistency are

s∑

i=1

bi = ϕ1, and

i−1∑

j=1

aij = ciϕ1(ciL∆t), i = 1, . . . , s.

Definition 2.2. A numerical method is said to be of order p if the numerical solution
ωm+1 is such that

ω(tm+1)− ωm+1 = O(∆tp+1),

where ω(tm+1) is the true solution.
Rather than analyze the Taylor expansion of every ETD-RK method, we can use rooted

tree analysis to show order conditions for general ETD-RK methods ([4], [1], and [5]). Here
we briefly list the order conditions for second and third order methods, referring to previous
works for the proof.

Theorem 2.3. An s-stage ETD-RK method given by the Butcher tableau
c A

bT

achieves second order if it is consistent and

s∑

i=2

cibi = ϕ2.

If the above condition is satisfied, and we also have

s∑

i=2

c2i bi = 2ϕ3, and

s∑

i=3

bi

i−1∑

j=2

cja
(0)
ij = ϕ3,

where a
(0)
ij refers to the constant term in the series expansion of aij, then the method is third

order.
In Section 4, we will present various second and third order methods, and in Section 5

we will discuss their stability and implementation.

3. The Matrix Exponential for HOMME-NH. Clearly, ETD-RK methods rely
heavily on the matrix exponential, so it is imperative that we have an efficient and accu-
rate approximation for eαLm , for a given constant α. There are several ways to compute an
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approximation to the matrix exponential [6]. We choose to employ a (2, 2)-Padé approxima-
tion with scaling and squaring. The (p, q)-Padé approximation for the matrix exponential
is defined as

eX ≈ Q−1
p,q(X)Pp,q(X),

where

Pp,q(X) =

p∑

j=0

(p+ q − j)!p!
(p+ q)!j!(p− j)!X

j

Qp,q(X) =

q∑

j=0

(p+ q − j)!q!
(p+ q)!j!(q − j)! (−X)j .

The particular structure of the linearization of the stiff terms in HOMME-NH allows us
to form Q−1

p,q(αLm)Pp,q(αLm) efficiently. We follow the same process as used in [2]. That
is, for a (2, 2)-Padé approximation, we can write the matrix exponential as

(Q2,2(αLm))
−1
P2,2(αLm) ≈ eαLm

P2,2(αLm) ≈ Q2,2(αLm)eαLm .

Since we are using a (2, 2)-Padé approximation, we can factor

Q2,2(αLm) = κ (σ1I − αLm) (σ2I − αLm) ,

with constants κ, σ1, σ2. While the constants σ1 and σ2 are independent of αLm and can be
computed explicitly ahead of time, we leave them as variables here, noting that if a different
(p, q)-Padé approximation were chosen, the same argument could be used with different con-
stants. We consider just the first factor (σ1I − αLm), and denote R := κ (σ2I − αLm) eαLm .
Our equation then becomes

P2,2(αLm) =

(
σ1I −αg∂µ∂φ
−αgI σ1I

)
R.

Left multiplying by a permutation matrix gives us

P̃2,2(αLm) =

(
σ1I −αg∂µ∂φ
0 σ1I − (αg)2σ−1

1
∂µ
∂φ

)(
R1

R2

)
.

This formulation allows us to solve for R2 with just a tridiagonal solve, and R1 with back
substitution. On the other hand, we also have

R = κ (σ2I − αLm) eαLm .

Repeating these steps allows us to solve for eαLm with just two tridiagonal solves, which is
much cheaper than finding Q2,2(αLm) explicitly.

The Padé approximation is most accurate when the complex eigenvalues of the operator
lie within the unit disk. We use the scaling and squaring technique [3] to rescale the spectrum

of the operator to the unit disk. Using the matrix relation exp(X) =
(
exp(X/2k)

)2k
, we

scale αLm by a power of 2 before computing the matrix exponential. This result is then
repeatedly squared until we get the desired eαLm .
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4. Designing ETD-RK Methods for HOMME-NH. When selecting an ETD-RK
method for implementation, two things we consider are efficient computation of stage values
and minimal storage. We do not claim that the following methods are unique to this paper,
but their derivation was original work with these goals in mind.

Here and throughout, we use the naming convention ETD-RK-i-j, where i gives the
order of the method and j is the number of stages. In the case where we consider more
than one method with a given order and number of stages, we denote the different methods
by a subsequent letter, a, b, . . . . The first method we consider is a second order ETD-RK
method, which we call ETD-RK-2-3a. It is given by the following Butcher tableau:

0
1
2

1
2ϕ

2
1

1 0 ϕ3
1

ϕ1 −2ϕ2 2ϕ2

(4.1)

where ϕji = ϕi (cjLm∆t), and ϕi = ϕi (Lm∆t). One downfall to (4.1) is that it requires the
storage of all of the stage values in order to compute the final state update. We can instead
consider another second order method, ETD-RK-2-3b, given by

0
1
2

1
2ϕ

2
1

1 0 ϕ3
1

ϕ1 − ϕ2 0 ϕ2

(4.2)

More computation is required in order to achieve higher order. In fact, a third order
method with entries only on the main subdiagonal will require at least 4 stages. One such
method is given by ETD-RK-3-4a:

0
1
2

1
2ϕ

2
1

1
2

1
2ϕ

3
1

1 ϕ4
1

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3

(4.3)

If we change the constants in (4.3), we can derive another third order method with the
same structure:

0
1
4

1
4ϕ

2
1

3
4

3
4ϕ

3
1

1 ϕ4
1

ϕ1 − 17
3 ϕ2 + 32

3 ϕ3
20
3 ϕ2 − 16ϕ3

−4
3 ϕ2 + 16

3 ϕ3
1
3ϕ2

(4.4)

By checking the conditions of Theorem 2.3, we can show that each of these methods
achieves the desired order.

5. Results. In addition to considering the computational cost and storage require-
ments of various ETD-RK methods, we also are interested in the stability regions of given
methods. Because the stiff and nonstiff terms of HOMME-NH are hyperbolic, the lin-
earization has purely imaginary eigenvalues, so we wish to use a method that has maximum
stability on the imaginary axis. While the stability analysis of the coupling of the underlying
RK method with the exponential part is beyond the scope of this paper, we recognize that a
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necessary condition for stability of an IMEX-RK method to integrate HOMME-NH is that
the underlying method has some stability on the imaginary axis. The stability regions of
the underlying RK methods for (4.1) and (4.2) are shown in white in Figure 5.1. A similar
comparison of the third order methods is shown in Figure 5.2.

(a) ETD-RK-2-3a (b) ETD-RK-2-3b

Fig. 5.1: Stability plots for second order ETD-RK methods. The white region denotes the
stable area of the underlying RK method. We wish to use a method with maximal stability
on the imaginary axis for HOMME-NH.

(a) ETD-RK-3-4a (b) ETD-RK-3-4b

Fig. 5.2: Stability plots for third order ETD-RK methods. The stability regions of the
underlying RK methods for these four stage ETD-RK methods are considerably larger than
in Figure 5.1.

It is worth noting that even though ETD-RK-2-3a and ETD-RK-2-3b are both second
order methods with three stages, their stability regions look quite different: ETD-RK-2-3b
has a much larger stability region than ETD-RK-2-3a. It is also well known that increasing
the number of stages often also increases the stability region, and we see that phenomenon
occurring when we compare the stability regions of ETD-RK-2-3a and ETD-RK-2-3b with
those of ETD-RK-3-4a and ETD-RK-3-4b. The trade-off is, of course, that the methods
with four stages require greater computation time.

To truly compare the utility of these methods, we must consider their overall efficiency
and accuracy. One way to do this is to look at a convergence test (step-size vs relative error)
along with an efficiency study of error vs runtime. This is shown in Figure 5.3. We run our
time integrators with the 2012 Dynamical Core Model Intercomparison Project (DCMIP)
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test case 3.1, which is a potential temperature perturbation along the equator of a small
planet, resulting in gravity waves [9]. The reference solution is a second order implicit, third
order explicit IMEX-RK method with a step size of 0.01 s.

(a) Efficiency Study (b) Convergence Test

Fig. 5.3: Results of a 1000 second integration of test case DCMIP 2012-3.1 on a small planet.
Lines with slopes of 2 and 3 are included in the convergence test for comparison.

6. Conclusions. The linearization of the stiff terms of HOMME-NH yielded a sparse
Jacobian with a block tridiagonal structure. This allowed for efficient computation of the
matrix exponential, making ETD-RK methods a viable time integrator for HOMME-NH.
In order for ETD-RK methods to be competitive with the current IMEX-RK methods, the
ETD-RK methods needed to store minimal stage values, and the computation of each stage
value needed to be as efficient as possible. In this paper, we presented several methods that
met these criteria. Their efficiency and accuracy was compared on a 1000 second run of test
case DC12.3.1. All of these methods performed reasonably well, and the stability regions of
the underlying RK methods were satisfactory.

We draw special attention to ETD-RK2-3a, which seems to have some of the best
accuracy and fastest computation time. If accuracy is prioritized above all else, then the
recommended method to use would be ETD-RK-3a with a small step-size.

It remains to be seen how these methods compare directly with the IMEX-RK methods.
One drawback to the ETD-RK methods is that the scaling and squaring for the matrix
exponential required many matrix multiplications. If another approximation to the matrix
exponential is more efficient than the (2, 2)-Padé approximation with scaling and squaring,
the ETD-RK methods might be a competitive alternative to the IMEX-RK time integrators
in HOMME-NH.
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LIQUID HYDROGEN STORAGE TANK PRESSURE RELIEF
SIMULATIONS USING NETWORK FLOW MODELING

DEREK M. MACHALEK∗, GABRIELA BRAN-ANLEU† , AND ETHAN S. HECHT‡

Abstract. For hydrogen vehicles to gain further acceptance, hydrogen fueling stations must be wide-
ranging and safe. At larger fueling stations, hydrogen is often stored and delivered in the liquid phase
because of its high energy density and fast transfer. In a liquid hydrogen storage tank, hydrogen vapor exists
above the cryogenic liquid. A common modeling assumption of a liquid hydrogen tank is thermodynamic
equilibrium. However, in hazardous scenarios this assumption may not hold. A non-equilibrium storage
tank model that included different boiling regimes was developed and used to examine 5 different scenarios.
The case of normal boiloff was used to validate the model. Scenarios with high conductivity through the
insulation layer (e.g., if vacuum were lost in the insulation layer), and high outside temperatures (e.g., if
there were a fire impinging on the tank), and combinations of these scenarios were used to exercise the model.
The simulations showed that there are differences between an equilibrium and a non-equilibrium model as
a tank depressurizes through a burst disk, boiling can be important in modeling non-equilibrium hydrogen
tanks, and that the combination of a pressure relief valve and burst disk are sufficient to depressurize a
liquid hydrogen tank under these abnormal scenarios. These and additional scenarios are of interest to the
safety codes and standards community, and can be used to ensure hydrogen’s safe use at hydrogen fueling
stations.

1. Introduction. Hydrogen has significant potential to impact the transportation in-
dustry, one of the largest consumers of fossil fuel. Hydrogen fuel cell vehicles can provide
a clean way to travel long distances. In order to gain adoption, hydrogen refueling stations
must be ubiquitous and safe. Currently, aspects of safety codes and standards for liquid
hydrogen refueling stations such as separation distances lack a well documented basis. The
separation distances are critical to hydrogen energy adoption, because the footprint of the
refueling station must be large enough to be safe, but small enough that more plots of land
are viable. The objective of this research is to enable simulations of hazardous scenarios
that hydrogen refueling stations may encounter. Specifically, a model for a liquid hydrogen
storage tank is needed, so that the rate of venting and blowdown of the tank can be accu-
rately predicted for a variety of circumstances, including normal conditions and off-normal
conditions such as a failure of the vacuum insulation.

Figure 1.1 shows a liquid hydrogen storage tank diagram. The tank contains both liquid
hydrogen and vapor hydrogen. In the model, these layers are separated by a thin massless
film of saturated vapor. Additional components involved in the hydrogen release scenarios
of interest in this study are shown in Figure 1.1, specifically the burst disc and pressure relief
valve. The rest of the piping and valves for loading the tank with hydrogen or discharging the
hydrogen to vehicles are not shown. The wall of the liquid hydrogen storage tank is composed
of an interior steel shell, a vacuum space with multi-layer insulation (MLI) material, and
an external steel shell. The vacuum and low thermal conductivity of the MLI significantly
reduce the heat transfer from the outside environment. As the liquid storage tank sits under
the sun for days, the temperature of the liquid hydrogen will increase, causing some liquid
hydrogen to evaporate and increase the pressure of the tank. For safety reasons, the tank is
designed to have normal boil-off flow through the relief valve to ensure the pressure inside of
the tank does not increase beyond the working pressure. In these simulations, the pressure
relief valve will open at 3.1 bar and reseal when the tank pressure drops to 2.9 bar. If the
pressure relief valve malfunctions or is not able to reduce the pressure, the burst disc acts as
a secondary safety mechanism to prevent the tank from exceeding the maximum allowable
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Fig. 1.1: Diagram of liquid hydrogen storage tank.

working pressure. In these simulations, the burst disc opens at a hydrogen vapor pressure
of 4 bar, and has a much larger opening than the pressure relief valve. Once the burst disc
opens, it does not close again.

Cryogenic tank dynamics have been previously researched for rocket fueling applications
[5, 7, 8]. Estey et al. [5] developed a thermodynamic non-equilibrium model to character-
ize the blowdown process of a propellant tank, where they solve for the mass and energy
equations of the liquid and vapor phase. They assumed a massless liquid-vapor interface
where heat transfer between the liquid and vapor happens only by convection. The authors
in [7, 8] developed a model for the filling of a cryogenic tank and showed that heat transfer
by conduction is also important when dynamic condensation blocking is present. Dynamic
condensation blocking happens when when heat conduction from the liquid-vapor interface
to the liquid is not fast enough that the temperature of the liquid-vapor interface increases
until condensation is stopped by evaporation. Petitpas [9] modified the Matlab model de-
veloped by Osipov et al. [8] to model the boil-off losses during transfer of liquid hydrogen
from a trailer to a storage tank located at a hydrogen refueling station. We build off of
these previous works and present a model that also includes heat transfer via boiling, which
becomes important with high heat flow into the tank. We also include a more detailed wall
heat transfer model than the previous works.

In this study, four liquid hydrogen release scenarios under abnormal conditions were
investigated to demonstrate the model capabilities: 1) vacuum loss in the MLI layer, 2) an
external fire engulfing the storage tank, 3) loss of vacuum and an engulfing fire, and 4) high
heat conduction through the insulation layer. The key metrics explored for the hydrogen
releases are how fast hydrogen is released and whether or not the pressure relief valve is
sufficient to lower the pressure of the tank to the rated tank pressure. Both thermodynamic
equilibrium and non-equilibrium models of the tank were explored to determine in what
scenarios the equilibrium assumption was valid and when it was not.

2. Model. The physics models were implemented in MassTran, a Sandia developed
python software [2]. MassTran uses the CoolProp [1] package in Python to maintain the
Helmholtz Equation of State (EOS). In the equilibrium model, the liquid and gas are as-
sumed to be in thermodynamic equilibrium (i.e., at the same temperature). That constraint
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Fig. 2.1: 1-D wall heat transfer model.

allows the vapor and liquid to be treated as a single control volume with only one continuity
equation. In contrast, in the non-equilibrium case the liquid and vapor will not be at the
same temperature, so the liquid and vapor mass balances must be treated separately. A de-
tailed wall heat transfer model, which includes wall boiling for high heat transfer scenarios,
was also included in the model.

2.1. Wall Heat Transfer Model. The 1-D wall heat transfer is shown in Figure 2.1.
The dashed vertical lines represent the finite volumes used to solve the problem numerically.
The 1-D energy equation to calculate the wall temperature, Tw, along the radial coordinates,
x, is shown in (2.1).

ρwCp,w
∂Tw
∂t

= κw
∂2Tw
∂x2

(2.1)

where ρw is the density of the wall, Cp,w is the specific heat of the wall, and κw is thermal
conductivity of the wall. Boundary conditions are shown in (2.2) and (2.3) are imposed at
the hydrogen-wall interface and wall-air interface, respectively.

∂Tw
∂t

∣∣∣∣
x=0

=
hi

ρwCp,w
(Tw(x = 0)− Tα) (2.2)

∂Tw
∂t

∣∣∣∣
x=R0

=
hair

ρwCp,w
(Tw(x = R0)− Tair) (2.3)

where hi is the convective heat transfer coefficient between the hydrogen inside the tank and
the inner wall, and hair is the convective heat transfer coefficient between air and the outer
wall. The wall density is ρw, Cp,w is the specific heat of the wall, Tair is the temperature
of air, and Tα is the temperature of phase α. R0 is the outer radius of the outer steel layer.
Details about developing implicit energy balances for the wall are shown in Appendix A.3.

Heat transfer mechanisms between the inner wall of the storage tank and the hydrogen
are shown in red in Figure 2.2. The storage tank was assumed to be a vertical cylinder.
The heat transfer between the wall and the hydrogen depends on the phase of the hydrogen
and the surface geometry. Separate wall heat transfer was calculated for the following
mechanisms: 1) the top surface of the wall and H2 vapor, Q̇T,V , 2) the side wall and H2

vapor Q̇S,V , 3) the tank side surface and liquid H2, Q̇S,L, and 4) the tank bottom surface

and liquid H2 Q̇B,L. The heat transfer rates were summed to calculate overall wall heat

transfer to the liquid and vapor (Q̇L,W = Q̇S,V + Q̇S,V and Q̇L,W = Q̇S,L + Q̇B,L).
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Fig. 2.2: Mass and energy flown in liquid and vapor control volumes (CVs) in a liquid
hydrogen tank during hydrogen releases through a valve or burst disk.

The heat transfer between the wall and the liquid hydrogen, Q̇L,W , is shown in (2.4),

and the vapor phase heat transfer, Q̇V,W , is calculated with equation (2.5).

Q̇L,W =
κL
fH

NuS,L(fHπDh)(Tw − TL) +
κL
Dh/2

NuB,L

(
πD2

h

4

)
(Tw − TL) (2.4)

Q̇V,W =
κv

(1− f)H
NuS,V ((1− f)HπDh)(Tw −TV ) +

κV
Dh/2

NuT,V

(
πD2

h

4

)
(Tw −TV ) (2.5)

The heat transfer correlations used in this model are listed in (2.6)-(2.9) [6].

NuS,L =

(
0.825 +

0.387Ra1/6

(1 + (0.492/Pr)9/16))8/27

)2

(2.6)

NuB,L = 0.Ra1/3 (2.7)

NuS,V =

(
0.825 +

0.387Ra1/6

(1 + (0.492/Pr)9/16))8/27

)2

(2.8)

NuT,V = 0.52Ra1/5 (2.9)

In these equations, Ra is the Rayleigh number, Pr is the Prandtl number, Dh is the tank
diameter (and characteristic length in the Rayleigh numbers for Eqs. 2.7 and 2.9), f is the
fraction fill of liquid, H is the overall tank height (and the height of the liquid or gas is the
characteristic length in the Rayleigh numbers for Eqs. 2.6 and 2.8), and TL and TV are the
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liquid and vapor hydrogen temperatures. The correlations for external flow over a flat plate,
(2.7) and (2.9), are valid for Rayleigh numbers less than 109 and 1011, respectively. The
external flow over a vertical plate correlations, (2.6) and (2.8) are for the entire Rayleigh
range [3]. It was assumed that the surface areas of the tank are reasonably large that these
external flow correlations can be used for this study. The heat transfer from the wall to the
hydrogen is calculated from these correlations.

2.2. Governing Equations. In the non-equilibrium model, a set of governing equa-
tions is defined for the liquid phase control volume (CV), and a different set is defined for
the vapor phase CV as shown in Figure 2.2. The liquid mass balance is captured in (2.10),

dmL

dt
= ṁcond − ṁboil (2.10)

where mL is the mass of the liquid. The condensation rate, ṁcond, is described in Section
2.3, and the boiling rate, ṁboil, is described in Section 2.4. The vapor mass balance is
captured in (2.11),

dmV

dt
= ṁevap + ṁboil − ṁvalve − ṁdisc (2.11)

where mV is the mass of the gas. The evaporation rate, ṁevap, is described in Section 2.3,
and the mass flow rates leaving the tank, ṁvalve and ṁdisc, are described in Section 2.5.

The liquid energy balance is captured in (2.12).

dUL
dt

= Q̇L,f + Q̇L,W + ṁcondhL,sat − ṁboilhL,sat (2.12)

where UL is the internal energy of the liquid, and Q̇L,f is the heat transfer rate from the
film to the liquid. Similarly, the vapor energy balance is captured in (2.13).

dUV
dt

= Q̇V,f + Q̇V,W + ṁboilhV,sat + ṁevaphV,sat − (ṁvalve + ṁdisc)hV (2.13)

In these equations, Q̇V,f is the heat transfer rate from the vapor to the film, and h is the
enthalpy of the liquid (L) or vapor (V ) phase at the actual or saturated (sat) conditions.

The equations for the equilibrium tank are simplified into a single mass and energy
balance. Further, the mass and energy transfer at the interface of the two phases is computed
with the thermodynamic equilibrium constraint. Therefore, the ṁec, ṁboil, and ṁcond terms
are neglected. The equilibrium mass balance and energy balances are found by ignoring the
interface terms and adding the two non-equilibrium mass balances together and the two non-
equilibrium energy balances together. The mass and energy balances for the equilibrium
model are shown in (2.14) and (2.15), respectively.

dm

dt
= −ṁvalve − ṁdisc (2.14)

dU

dt
= Q̇L,W + Q̇V,W − (ṁvalve + ṁdisc)hV (2.15)
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2.3. Liquid-vapor Interface Evaporation and Condensation. The liquid and
vapor are modeled as being separated by a thin mass-less vapor film at the saturation tem-
perature of the vapor phase (i.e., Tf = Tv). The evaporation rate, ṁevap, and condensation
rate, ṁcond, are limited by the heat transfer to the liquid-vapor interface. An energy balance
on the thin vapor film can be performed to obtain the evaporation mass flow rate, ṁevap

(2.16).

ṁevap = − Q̇L,f + Q̇V,f
hvap

(2.16)

The heat of vaporization, hvap(Tf ) = hV,f − hL,f , is defined at the film temperature, Tf .

The heat transfer between the film and the phase (α = L or V), Q̇α, is via conduction
and in some cases via convection. While conductive heat transfer to the thin film is always
happening, the only convection mechanism, natural convection only occurs in the vapor
when the vapor is colder than the film or in the liquid when the liquid is hotter than the
film (i.e., a higher density fluid is on top of a lower density fluid within a given phase).
The heat transfer from either phase to the film is the summation of the heat transfer due
to conduction, Q̇α,cd, and convection, Q̇α,cv (Q̇α,f = Q̇α,cd + Q̇α,cv). A Boundary Layer
(BL) model was developed by Osipov and Muratov [7], and later modified by Petitpas
[9], to account for the temperature gradients in the liquid and gas volumes. However, the
simulation was highly sensitive to BL lengths, and the authors do not justify their length
selection. As a result, a simpler conduction correlation for the conductive heat transfer
between the film and hydrogen in phase α is shown in (2.17) [4].

Q̇α,cd =

(
καCv,αρα

π

)1/2

Ac(Tα − Tf ) (2.17)

The equation for natural convection from the is demonstrated in equation (2.18).

Q̇α,cv = 0.156

(
gβρ2

α(Tα − TF )

καµα

)1/3

Ac(Tα − Tf ) (2.18)

In these equations, κ is the thermal conductivity, Cv is the heat capacity, ρ is the density,
and Tα is the temperature of the phase α (liquid or gas). Tf is the temperature of the film,
Ac is the cross sectional area of the film interface, g is the gravitational constant, β is the
thermal expansion coefficient, and µ is the dynamic viscosity.

The condensation rate is the same as the evaporation rate, but in the opposite direction.

ṁcond = −ṁevap (2.19)

The condensation rate might be adjusted depending on the density calculation. The
density is first calculated by assuming that both phases are at the same pressure. A solver is
used to find the pressure, given the internal energy of both phases as a result of the solution
to the energy equations (Eqs. 2.12 and 2.13). With the density and mass (found by solving
the mass balance equations, Eqs. 2.10 and 2.11) of each phase known each phase volume can
be calculated. The phase volumes must add up to the total tank volume (VV +VL = VTank).
If the liquid is at the saturation pressure (has a quality between 0 and 1), the condensation
rate is adjusted. The pressure is then recalculated where the liquid is saturated and the
remaining tank volume is assumed to be filled with the vapor. Note that sometimes it would
be preferable to assume that the vapor is saturated. However, the solver runs into issues
since changing the pressure does not greatly impact liquid density. Therefore, when the
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Table 2.1: Hydrogen boiling regimes.

Regime ∆T (K) q̇boil (W/m2)

Convective 0-0.1 0.16Ra1/3∆T
Nucleate boiling 0.1-3 6309∆T 2.52

Critical heat flux 3 (0.18− 0.14(P/PC)5.68)hvapρV

(
gσ(ρL−ρV )

ρ2V

)1/4

Transition 3-15 Q̇CHF − ∆T−∆TCHF

∆T−∆TMHF
(Q̇CHF − Q̇MHF )

Minimum heat flux 15 0.31hvapρV

(
gσ(ρL−ρV )
(ρL+ρV )2

)1/4

Film boiling >15 f(D, ρ, g, κ,∆T )

liquid occupies the remaining volume after the vapor phase volume is set, the liquid has
drastic changed in volume and as a result, it has unreasonable properties (e.g., very high
temperature). One area to explore is handling of subcooled vapor/superheated liquid to
meet the density and volume constraint.

After this calculation, the vapor phase may have a quality less than 1. This sometimes
occurs when the pressure is recalculated if the liquid phase density (at saturation) is low
enough to expand and confine the vapor phase into a small volume. The resultant density
of the vapor phase indicates a liquid vapor mixture. In order to get the vapor phase back
to saturation, a first order condensation term between the saturation quality of 1, and the
actual quality is used to drive the liquid component of the vapor phase back to the actual
liquid phase. The additional condensation ṁcond,add is calculated in (2.20).

ṁcond,add = (1− χV )mV (2.20)

Where χV is the quality of the vapor and mV is the mass of vapor.

2.4. Boiling. When the liquid becomes saturated and the temperature difference (∆T )
between the wall and the liquid is large enough, pool boiling will occur. This is a secondary
form of heat and mass transfer between the liquid and vapor phases. There are four regimes
of pool boiling. Table 2.1 shows the temperature difference and heat transfer function for
each of those regimes as well as the critical heat flux (CHF) and minimum heat flux (MHF)
[12]. Before boiling was added to the model, in high heat transfer scenarios the liquid in
the tank became very hot because the liquid absorbed heat from the wall quickly, but the
evaporation rate and associated energy loss through the film was low. By adding boiling to
the model, the rapid evaporation rate is captured.

The film boiling regime was not implemented in the code because the temperature
difference between the wall and the hydrogen is not expected to be larger than 15 K, even
in abnormal heat transfer cases. The expression for the film boiling critical heat flux can be
found in [12].

The boiling rate, ṁboil, is calculated by dividing the heat transfer due to boiling by the
heat of vaporization, since the liquid is saturated,

ṁboil =
q̇boilAs,L
hvap

(2.21)

where As,L is the surface area of the liquid to wall interface.
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Fig. 2.3: Network flow modeling diagram for hydrogen storage tank.

2.5. Mass Leaving the Tank. Mass leaves the tank through the pressure relief valve
ṁvalve and the burst disc ṁdisc when they are open. The pressure relief valve opens at 3.1
bar and closes at 2.9 bar after hydrogen has been released. The burst disc opens at 4 bar
and never closes. They are controlled with state events that track if a pressure triggering
event has occurred, which causes them to switch from open to closed or vice-versa.

2.6. Network Flow Modeling - MassTran. This simulation was run under the
paradigm of a network flow model. In this work, the framework of MassTran [2] was used.
MassTran is able to model compressible flows in networks consisting of pressure vessels,
connecting tubing, orifices, valves, and flow branches. Components in MassTran are modeled
as nodes or paths. Mass and energy balances are handled in the nodes. Momentum balances
are handled in the paths. The diagram of network flow modeling for the hydrogen storage
tank is shown in Figure 2.3. The storage tank and environment are modeled as nodes, and
the valve and burst disc are modeled as paths. The paths are used to calculate the mass
flow rates at the valve and burst disc by solving the momentum equation. The equations for
the hydrogen storage tank are developed into nodes for MassTran for the equilibrium and
non-equilibrium cases. As previously mentioned, the valve and orifice components already
exist in MassTran and were slightly modified to accommodate the pressure based openings
for the hydrogen releases through the pressure relief valve. Finally, the ambient node serves
as a sink at atmospheric pressure.

3. Validation. The hydrogen storage tank simulations were run with the specifica-
tions of a cylindrical hydrogen storage tank (see Figure 1.1) located at Lawrence Livermore
National Laboratory. Experimental results from the tank were available for validation of
the simulations. Table 3.1 shows the properties of the hydrogen storage tank used in the
simulations. Table 3.2 lists the parameters used for the heat transfer tank wall model.

The thermal properties of the wall materials were assumed constant. The thermal
properties of the inner steel layer were evaluated at 20K, while the properties of the outer
steel layer were evaluated at 300 K. The heat capacity and density of MLI were not known
and set to very low values. Effectively, the MLI does not store or discharge any energy, it
only serves to resist heat transfer from the two steel shells. The thermal conductivity is
estimated to be on the order of 10−5 W/m-k [10]. In the electrical resistivity analogy to
heat transfer, the heat transfer between steel shells through the MLI is so large that it is
effectively the only resistance to heat transfer.

For validation, the tank described by Petitpas [9] with normal boil-off was simulated.
As the liquid hydrogen tank sits unused under weather conditions, the liquid hydrogen starts
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Table 3.1: Tank Properties.

Component Value Units

Tank diameter 2 m
Tank height 3.97 m
Liquid fill 0.8 -
Safety valve open pressure 3.1 bar
Safety valve close pressure 2.9 bar
Safety valve diameter 0.005 m
Burst disc open pressure 4 bar
Burst disc diameter 0.038 m

Table 3.2: Parameters for heat transfer wall model.

Component Value Units

Interior steel thickness 0.0111 m
Interior steel heat capacity 25 J/kg-K
Interior steel density 8050 kg/m3

Interior steel thermal conductivity 3 W/m-K
MLI thickness 0.0508 m
MLI heat capacity 0.1 J/kg-K
MLI density 0.1 kg/m3

MLI thermal conductivity 20−5 W/m-K
Exterior steel thickness 0.0038 m
Exterior steel heat capacity 450 J/kg-K
Exterior steel density 8050 kg/m3

Exterior steel thermal conductivity 15 W/m-K
Ambient temperature 300 K
Ambient heat transfer coefficient 10 W/m2-K

slowly heating up until the vapor pressure inside the tank reaches 3.1 bar. At this point,
the pressure relief valves opens to lower the pressure inside of the tank to 2.9 bars. Once
the tank reaches a pressure of 2.9 bar, the pressure relief valve closes.

Figure 3.1 shows a simulation for the volume fraction of liquid in the tank for the
experimental results and the equilibrium model of the tank. The equilibrium model was
used because of computation efficiency and because it shows similar results to the non-
equilibrium model (discussed later) for slow tank heat transfer. Since the simulation models
the case of freshly loaded hydrogen to the storage tank, there is a temporal difference with the
experimental data. The simulated hydrogen first heats up, expands, pressurizes and begins
to vent at 3.1 bar of pressure. After the venting of the simulation has reached the same
volume fill as the experiments, the experiments are overlaid onto the plot, at approximately
day 13.5. The experimental loss of hydrogen from the storage tank is approximately the
same as the simulation for the first six days of venting. However, after that point the venting
in the experimental tank starts to slow down. The heat transfer to the tank, which drives
pressurization and mass transfer out of the tank, appears to be a function of the liquid
volume [9].
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Fig. 3.1: Comparison of model to experimental [9] hydrogen release.

Figure 3.2(a) shows the hydrogen mass loss from the tank for the equilibrium and
non-equilibrium models during the normal boil off. If the tank is left to vent under these
conditions, it will empty over the course about 115 days. The pressure relief valve will
safely handle the hydrogen release. Over the course of many releases, the equilibrium and
non-equilibrium models are approximately the same. Each pressure relief episode in the
non-equilibrium case releases approximately 0.25 kg of hydrogen, while in the equilibrium
model, over 4 kg are released. In Figure 3.2(a), both the equilibrium and non-equilibrium
models predict the hydrogen in the tank to heat up at a similar rate, illustrated by the
time to start venting. The pressurization and heating are also illustrated in Figure 3.2.
These results indicate that the evaporation rate between the liquid and vapor phases of the
non-equilibrium model is not a bottleneck in pressurizing the tank. Heat transfer through
the MLI is limiting the overall heat transfer, and drives the pressurization rate.

The major difference between the two models is how the venting cycles happen. For the
equilibrium phase, when the vapor pressure drops from opening the pressure relief valve,
some of the liquid phase immediately evaporates to preserve thermodynamic equilibrium.
As a result, the pressure in the tank does not drop as fast, and more vapor leaves the tank
before the 2.9 bar threshold to close the valve is reached. On the other hand, in the non-
equilibrium case, when the vapor phase leaves the tank through the pressure relief valve and
the vapor pressure drops, the dynamics of mass transfer become critical. The evaporation
with the heat transfer through the MLI is not as fast as the instantaneous evaporation
with the thermodynamic equilibrium, and as a result the vapor pressure drops to 2.9 bar
quickly. However, since less energy is lost in each venting episode, less energy is required to
pressurize the tank again and re-open the vent. This is also shown in the rapid temperature
and pressure cycles in the tank for the non-equilibrium model in Figure 3.2(b) and Figure
3.2(c). In the non-equilibrium model, the liquid temperature is stable compared to the
vapor temperature. The higher liquid temperature in the non-equilibrium case, compared
to the equilibrium case, causes faster heat transfer to the vapor and faster pressurization.
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Fig. 3.2: Tank conditions for the non-equilibrium and equilibrium models with normal heat
transfer.

4. Results. In this section, four liquid hydrogen storage tank pressure relief scenarios
are explored: 1) Vacuum loss in the MLI layer, 2) An external fire engulfing the storage
tank, 3) Loss of vacuum and an engulfing fire, and 4) High conduction through the insulation
layer. The key metrics explored for the hydrogen releases are how fast hydrogen is released
and whether or not the pressure relief valve is sufficient to lower the pressure of the tank
to the rated tank pressure. All of the tank simulations in the results section have the same
specifications as the tank described in Section 3 (Table 3.2), unless otherwise stated.

4.1. Loss of Vacuum. One quasi-real world scenario that these tanks may encounter
is loss of vacuum in the insulation layer between the steel shells. The gap between the two
steel shells is assumed to be filled with air, so the thermal conductivity, density, and heat
capacity of air (κair = 0.022 W/m-K, ρair = 1.225 kg/m3 cp,air = 1000 J/kg-K) were used
for the insulation layer. The results are only shown for the non-equilibrium model.

Figure 4.1 shows that the pressure relief valve can safely reduce the tank pressure below
2.9 bar. With the loss of vacuum, the pressure relief valve begins to vent after approximately
2.4 hours and vents about 35 times an hour, compared to the normal heat transfer case where
it starts to vent after nearly 10 days and at a frequency on the order of 1 time every hour.
The rapid cycling of the valve may cause safety issues. The temperature of the liquid, vapor,
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Fig. 4.1: Tank mass, pressure, and temperature for the case of a loss of vacuum in the
insulation layer (κair = 0.022 W/m-K, ρair = 1.225 kg/m3 cp,air = 1000 J/kg-K in the
insulation layer).

and inside wall of the tank is shown in the bottom frame of Figure 4.1. The figure shows
how close all of the temperatures are, and how the gas and wall temperatures both oscilate
a bit as the relief valve opens and closes. The mass loss from the tank is shown in the top
frame of Figure 4.1. If the pressure relief functions properly (as shown in the figure), it
can safely reduce the pressure of the tank. The tank will release hydrogen continuously for
about 25 hours at a rate of 27 kg/h. Each venting episode releases about 0.7 kg of hydrogen
vapor.

4.2. Engulfing Fire. A second quasi-real world scenario that was explored was high
external temperatures to the tank, possibly from a fire. The scenario considers the case
where the ambient temperature around the hydrogen storage tank is 1200 K. Only convective
heat transfer is considered, no radiation from the fire, and the entire ambient surroundings
are at this temperature, not just one side of the tank. Only the non-equilibrium model is
considered.

The plots for the case of the external fire are similar to the loss of vacuum in the



D. Machalek, G. Bran-Anleu, and E.S. Hecht 301

650

660

670

680

690

700

m
as

s 
in

 ta
nk

 (k
g)

1.5

2.0

2.5

3.0
pr

es
su

re
 (b

ar
)

0 20 40 60 80 100
time (hours)

22

23

24

25

te
m

pe
ra

tu
re

 (K
)

gas
liquid
tank wall

56 58 60

696

698

56 58 60

3.0

3.1

56 58 60
24.6

24.8

25.0

Fig. 4.2: Tank mass, pressure, and temperature for the case of an external fire (ambient
temperature of 1200 K).

insulation. The middle frame of Figure 4.2 shows the pressure variation with the rapid
opening and closing of the safety relief valve. The valve opens and closes about 6 times
per hour. The bottom frame of Figure 4.2 shows the temperature cycling with the valve
opening and closing. The reason the wall temperature changes so much is due to the low
heat transfer through the MLI. Unlike the case of vacuum loss, where the heat transfer
through the wall is significant, the heat transfer through the wall in this case is much lower.
As a result, heat loss due to heat transfer to the vapor phase is not readily replaced with
heat transfer through the MLI. The mass loss of hydrogen from the tank is shown in the
top frame of Figure 4.2. The mass loss from the tank is managed with the pressure relief
valve. The average venting rate is 1.1 kg/h, which indicates about 636 hours of venting to
remove the hydrogen. Each venting episode release about 0.25 kg of gaseous hydrogen.

4.3. Engulfing Fire with Loss of Vacuum. The third examined case is the com-
bination of the previous two cases, an external fire with loss of vacuum in the insulation
layer. In other words the ambient temperature is set to 1200 K, and the thermal conduc-
tivity, density, and heat capacity of air (κair = 0.022 W/m-K, ρair = 1.225 kg/m3 cp,air =
1000 J/kg-K) were used in the middle layer of the wall.
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Fig. 4.3: Tank mass, pressure, and temperature for the case of an engulfing fire with a loss
of vacuum in the insulation layer (ambient temperature of 1200 K, κair = 0.022 W/m-K,
ρair = 1.225 kg/m3 cp,air = 1000 J/kg-K in the insulation layer).

The pressure and temperature shown in the bottom two frames of Figure 4.3 illustrate
the details of what happens in the tank. As the tank heats up and pressurizes to 3.1 bar, the
pressure relief valve opens, after 35 minutes. While this reduces the rate of pressurization,
it does not reduce the pressure and the tank continues to pressurize to 4 bar, while still
releasing mass. The pressure relief valve cannot handle this case. After the burst disc
opens, the tank rapidly releases hydrogen until the vapor phase is at the pressure of the
ambient environment. Then the tank continues to lose mass through the bust disc until it is
empty. The mass loss for this scenario is shown in the top frame of Figure 4.3. The initial
hydrogen release rate is about 0.7 kg/min when the pressure relief valve opens. When the
burst disc opens, the hydrogen release is about 60 kg/min for 9 seconds, then it settles to a
steady release rate of 2.7 kg/min.

4.4. High conduction through the insulation layer. To explore a hazardous hy-
drogen release scenario, a case with abnormally high conduction through the insulation layer
is explored. In this scenario, the insulation thermal conductivity is set to 1 W/m-K.

Similar to the case of normal heat transfer to the tank, both the equilibrium and non-
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Fig. 4.4: Tank mass, pressure, and temperature for the case of increased conduction through
the insulation layer (κinsulation = 1 W/m-K).

equilibrium models start venting at the same time. This is shown in Figure 4.4. Interestingly,
the bottom frame of Figure 4.4 shows how the vapor and liquid in the non-equilibrium tank
are at significantly different temperatures. Since the vapor phases for both the equilibrium
and non-equilibrium cases are at approximately the same pressure, the non-equilibrium gas
must be at a lower density. The small dip in the equilibrium gas temperature, prior to the
tank opening (3-5 minutes), is due to the liquid phase boiling. When the liquid boils, it
adds saturated vapor to the vapor phase, which cools down the vapor.

The pressure relief valve opens at 3.1 bar, but does not have a noticeable impact on
depressurizing the tank as seen in the middle frame of Figure 4.4. Instead the tank pressure
rises to 4 bar and the burst disc opens. Again, the venting shows major differences between
the equilibrium and non-equilibrium models. In the equilibrium model, the pressure drop
is slower, but there is a more dramatic loss of mass from the tank initially. In the non-
equilibrium model the vapor phase loses pressure very quickly. The mass loss is then limited
by evaporation and boiling from the liquid phase, which quickly leaves through the burst
disc. Finally, both the equilibrium and non-equilibrium models reach a state where the mass
loss is limited by heat transfer through the tank, at around 10 minutes, where the pressure
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in both models is around atmospheric.
The mass loss from this tank is illustrated in the top frame of Figure 4.4. In this case

the pressure relief valve cannot safely manage the tank pressure. The mass is lost from the
tank over the span of about an hour. In the non-equilibrium case, the first 100 kg are vented
from the tank in about 6 minutes, while the equilibrium model predicts this mass loss to
occur in under a minute. After this initial high rate of venting, both releases eventually
settle to a mass loss rate of about 9 kg/min.

5. Conclusions. Five scenarios for a hydrogen storage tank were examined. First, a
validation scenario with normal boil-off was compared to experimental data from a real world
tank. Then four abnormal scenarios were explored, a loss of vacuum in the insulation layer,
a high ambient temperature (to simulate an engulfing fire), a high ambient temperature with
a simultaneous loss of vacuum, and high conduction through the insulation layer. Only the
cases with extreme heat transfer to the tank caused the burst disc of the hydrogen tank to
open and release hydrogen quickly (30-60 kg/min). In the case of loss of vacuum or external
heat from a fire, the pressure relief on the tank managed to keep the pressure on the tank
down. The result was a controlled release of hydrogen from the tank and at a much faster
rate than the normal heat transfer.

Each venting episode through pressure relief valve releases hydrogen at the same rate
(0.7 kg/min). The release is a function of the valve and not the specific heat transfer cases.
Changing the valve specifications would change that rate. When the pressure relief valve
suffices to control the hydrogen release, the valve opening frequency depends on the rate of
heat transfer to the tank, higher heat transfer leads to more frequent valve openings, and
the volume of liquid in the tank changes the duration of the release, less liquid (more vapor)
leads to a longer release. The average mass loss form the tank is proportional to the heat
transfer to the tank.

When the pressure relief valve is sufficient to control the release, and many release events
occur, then the equilibrium model works as a good surrogate to the non-equilibrium model.
However, when only a single venting event occurs, abnormal transfer or fire and vacuum
loss, the equilibrium model does not work well. In those cases the mass transfer between the
liquid and vapor phase (evaporation and boiling) become critical. The boiling mass transfer
was a critical addition to avoid simulations where the liquid was substantially hotter than
the vapor.

Each scenario reveals the different hydrogen releases that a hydrogen dispensing station
may experience. Those releases can be taken a step further to model flames or hydrogen
mass transfer to help set safety codes and standards for hydrogen storage tanks. Those
standards can help make stations safe and be built on the smallest footprint.

5.1. Future work. It is clear from Section 3 that the experimental release of hydrogen
from the storage tanks decrease with tank volume. However, the presented model has a
constant release of hydrogen regardless of tank fill. Since the mass loss in the tank is so
closely tied to heat transfer, it is likely that the heat transfer through the tank depends on
the height of liquid in the tank. One possible explanation is that the MLI properties are
impacted by the height of liquid in the tank. Another explanation is that the model does
not consider a 2-D model for the wall temperature, which may cause differences in heat
transfer through the tank.

Other potential improvements to the model include the use of subcooled vapor or super-
heated liquid states. However that would require a departure from CoolProp. Temperature
dependent wall properties (Cp and κ) may improve accuracy. Finally adding spatial dis-
cretizations to the vapor and liquid would add granularity to the simulation. The current
0-D model assumes instantaneous mixing of the hydrogen. As a result, when boiling occurs
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in the model (Tw−TL > 0.1), rapid heat transfer happens in part because the heat transfer
rate through the liquid is assumed to be instantaneous. In other words, the current boiling
heat transfer model overestimates the heat transfer from the wall to the liquid. A correction
factor or maximum heat transfer rate could be considered since the cooler liquid at the
middle of the liquid phase needs time to reach the wall. Instead of boiling the system could
also be modeled as flash evaporation, like the work of Tani et al. [11].

Experiments to more precisely determine the mass transfer mechanism between the
liquid and vapor phase would help with modeling. In the hazardous release scenarios, that
is a critical value that keeps the hydrogen from releasing as much hydrogen as predicted
by the non-equilibrium model. In order to assist in the validation and elucidation of these
mechanisms, detailed specifications of the tank are needed.
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Appendix A. Code.
The simulations were run using MassTran 0.19.3, Python 2.7, and with CoolProp 6.3.0.

There is work in progress to make MassTran compatible with Python 3.

A.1. Example input file.

# System definition
System:

source:
type: NonEqTank
eos_init: #this is the liquid

quality: 0
pres: 138000.0
#temp: 15
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mole_fractions:
Hydrogen: 1.0

eos_init_vapor: #this is the vapor
quality: 1
pres: 138000.0
#temp: 30.0
mole_fractions:

Hydrogen: 1.0
geometry_init:
shape: ’cylinder’
length: 3.97
diameter: 2

fraction_liquid: 0.8
wall_heat_transfer:

temperature_amb: 300
heat_transfer_coef_amb: 10 #w/m2-K
init_wall_temp: [21.46, 21.46, 21.46, 21.46, 21.46, 93, 162,

↪→ 231.3, 300, 300, 300, 300, 300] #estimate initial wall
↪→ temps. finite volumes = sum numxl (15) - #walls (3) + 1

wall_properties:
wall_1: #steel

wall_thickness: 0.0111 # From Petitpas
rho_wall: 8050.0 # kg/mˆ3
cp_wall: 25 # J/kg-K
thermal_conductivity_wall: 3 #W/m-K #204.2
numxl: 5 #must be at least 3, code assumes a middle layer
wall_2: #insulation/air
wall_thickness: 0.0508 #m
rho_wall: 0.1 #kg/mˆ3 #0.1
cp_wall: 0.1 #J/kg-K #0.1
thermal_conductivity_wall: 20.0E-5 #1 #20.0E-5 #1 #0.022

↪→ #W/m-K
numxl: 5

wall_3: #steel
wall_thickness: 0.0038 #m
rho_wall: 8050.0 # kg/mˆ3
cp_wall: 450 # J/kg-K
thermal_conductivity_wall: 15 #W/m-K #204.2
numxl: 5 #must be at least 3, code assumes a middle layer

relief_valve:
type: PressureValve
geometry_init:
diameter: 0.005 # From Petitpas

upstream: source
downstream: sink
init_open: False
atol:
pressure: 1.0e-6

close_pres_ratio: 2.965 #43 psi
open_pres_ratio: 3.103 #45 psi

burst_orifice:
type: BurstOrifice
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geometry_init:
diameter: 0.038 #1.5"

upstream: source
downstream: sink
open_pres_ratio: 4.0 #Pressure ratio between the upstream and

↪→ downsream where the orifice opens and stays open

sink:
type: BoundaryNode
eos_init:

temp: 300.0
pres: 1.e+5
mole_fractions:

Hydrogen: 1.0
geometry_init:
shape: ’sphere’
volume: 1.0e+20

wall_heat_transfer:
model: combined
wall_temperature: 300.0

atol:
pressure: 1.0e-6
temperature: 1.0e-6

Solver:
simulation_title: "Non-equilibrium Hydrogen Tank"
sim_time: 2592000
atol: 1.0e-4
rtol: 1.0e-4
#maxh: 1000 #maxh designates the maximum time step the solver can take

Fluid:
species:

- Hydrogen
Output:

format: csv #hdf5 #csv
file_name: Non_Eq_normal

A.2. Timing and tolerances. The equilibrium model runs about 100 times faster
than the non-equilibrium model. There are two main reasons for this. The first is that
the valve opens/closes far more often in the non-equilibrium model than in the equilibrium
model. Those state events effectively cause the simulation to pause and to restart. The
second is IF statements in the non-equilibrium code that cause discontinuities and therefore
smaller time steps. The culprits are the boiling and condensation IF statements. The dispar-
ity between the equilibrium and non-equilibrium model is especially large when those items
are triggered. The issue was that the when evaporation occurred (the liquid was saturated
and nucleate boiling was possible) the liquid would jump to being just below saturation and
oscillate between those two regimes. The heat transfer with boiling is significantly different
than the convective heat transfer. This may be rectified with a less aggressive boiling heat
transfer regime.

One work around for the boiling model was to let the vapor become slight superheated
and then instead of using the heat transfer from the wall dictate the amount of boiling, the
difference between the enthalpy of the superheated liquid and the enthalpy of the saturated
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Fig. A.1: Four heat transfer locations from the wall to the hydrogen.

liquid was the driving force for evapoaration, modified with a constant. This worked well
except for the case of large pressure drops where the enthalpy of saturated liquid also
dropped drastically. Therefore the minimum of those two evaporation heat transfer regimes
was taken, which is mathematically presented in A.1

ṁboil = min

(
K(HL −HL,sat)

Hvap
,
Q̇WL

Hvap

)
(A.1)

A value of K = 100 worked well to mimic the wall boiling results.
For the abnormal heat regime tolerances at 10−4 worked well in the trade off accuracy

and run time. Still, those simulations took 10-15 minutes.

A.3. Implicit wall heat transfer. The implementation of implicit wall heat transfer
was built into both the equilibrium and non-equilibrium tank node components for hydrogen
transportation of MassTran. The addition of the residual equations allowed for faster com-
putation since it could handle larger time steps than the explicit equations. Figure 2.1 shows
the discretization of the wall into finite volumes. The code has pre-built discretizations for
cylinder and sphere volumes, which is automatically selected based on the geometry of the
system. In the discretization, x represents the distance from the inside of the tank through
the shell, V represents the wall finite volume, A represents the interface area.

The properties of the wall, heat capacity (Cp), thermal conductivity (κ), and density (ρ),
are constant. Density and heat capacity are applied to the volume centers. Heat capacity
is applied to the interfaces. When two different layers touch (e.g., MLI and Steel), a cell
made out of half of each layer will be created, as seen in Figure 2.1, with the average density
and heat capacity of the two layers. The interface touching the MLI with have the thermal
conductivity of MLI and same for the steel.

Three types of wall heat transfer occur. For notation of the finite volume, i represents
cell counts starting at the inside most wall volume (i=1) to the outside most wall volume
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(i=n). Using the orientation of Figure 2.1, there is convection from the hydrogen to the
wall from the left and conduction to the next wall component to the right (i=1), interior
conduction (i=2:n-1), and conduction from the left and convection to the right to ambient
conditions at (i=n).

The residual equation for i=1 is shown in (A.2)

res = −ρiCp,iVi
dTi
dt
− Q̇L,W − Q̇V,W +Aiκi

Ti+1 − Ti
xi+1 − xi

(A.2)

The residual equation for the interior volumes i=2:n-1 is shown in (A.3)

res = −ρiCp,iVi
dTi
dt
−Ai−1κi−1

Ti − Ti−1

xi − xi−1
+Aiκi

Ti+1 − Ti
xi+1 − xi

(A.3)

The residual equation for the exterior volumes i=n is shown in (A.4)

res = −ρiCp,iVi
dTi
dt
−Ai−1κi−1

Ti − Ti−1

xi − xi−1
−Aihamb(Tamb − Ti) (A.4)

The derivatives of wall temperatures can be large at the beginning of simulations, which
can cause it to crash. Therefore, careful thought should go into the those temperature
distributions. In the input file, the number of layers (e.g., Steel, MLI, Steel) and the
number of discretization of those layers with numxl can be selected. As mentioned above,
the interface of two layers will merge together to form a joint finite volume, thereby reducing
the number of finite volumes by 1. The result is that 3 layers, each discretized into 5 volumes,
will have 13 finite volumes total (3× 5− 2 interfaces).

When these equations are entered into MassTran formatting, the T values are replaced
with y[index]. y[index] tells the solver where the specific T value is stored in the solver.
Likewise, the dT

dt values are replaced with yd[index].
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